This is an R Markdown
Notebook. When you execute code within the notebook, the results appear
beneath the code.
rm(list=ls())
First, run the following chunk to load the necessary libraries.
library(stringr)
library(ottr)
Second, run this chunk to make sure graphical output will work.
options(bitmapType='cairo')
library(readr)
library(dplyr)
arrange(seq)
#comseq1<-list("T","G","c","A","^","A","A","A")
#comseq1
#cat(paste(comseq1),sep ="\n")
comseq1 <- c('T', 'G', 'C', 'A', '^', 'A','A','A','A')
comseq1
#cat(paste(x1),sep ="\n")
sort_comseq1<-sort(comseq1)
sort_comseq1
#write the compressed sequence as a string. using a variable called
compressed_seq1
compressed_seq1<-("TGCA^AAA")
compressed_seq1
#change the sequence from string to be as vector by using the
function strsplit. using a variable called sequence_1
sequence_2<-strsplit(compressed_seq1, "")[[1]]
sequence_1<-strsplit(compressed_seq1, "")[[1]]
sequence_1
#use the function sort to make the sequence in an alphabetical
order
sort(sequence_1)
cat(paste(sort(rep(sequence_1,)),sep ="\n"))
for(i in 1:2) {
new <- rep(i, nrow(df))
data[ , ncol(df) + 1] <- new
colnames(df)[ncol(df)] <- paste0("new", i)
}
first_column<- c("^","G","A","T","T","A","C","A")
second_column<- sort(first_column)
third_column<-paste(first_column,second_column)
fourth_column<-sort(third_column)
#fifth_column<-paste(first_column,fourth_column)
#sixth_column<-sort(fifth_column)
#seventh_column<-paste(first_column,sixth_column)
#eight_column<-sort(seventh_column)
#ninth_coulmn<-paste(first_column,eight_column)
#tenth_coulmn<-sort(ninth_coulmn)
#elventh_coulmn<-paste(first_column,tenth_coulmn)
#twelveth_coulmn<-sort(elventh_coulmn)
#df<-data.frame(first_column,second_column,third_column,fourth_column,fifth_column,sixth_column,seventh_column,eight_column,ninth_coulmn,tenth_coulmn,elventh_coulmn,twelveth_coulmn)
df<-data.frame(first_column,second_column,third_column)
df
first_column<- c("^","G","A","T","T","A","C","A")
second_column<- sort(first_column)
third_column<-paste(first_column,second_column)
fourth_column<-sort(third_column)
#df<-data.frame(first_column,second_column,third_column)
df<-data.frame(first_column, second_column, third_column, fourth_column)
df
rm(list=ls())
first_column<- c("^","G","A","T","T","A","C","A")
for(i in first_column) {
column_variable<- cbind()
second_column<- sort(first_column)
third_column<-paste(first_column,second_column)
fourth_column<- sort(fourth_column)
length_1<-length(df)
#new <- rep(i, nrow(df))
#df[ , ncol(df) ] <- new
#colnames(df)[ncol(df)] <- paste0("new", i)
#df<-cbind(df,sort(first_column))
}
df
View(df)
length_first_column<- length(first_column)
length_first_column
str(df)
df <- data.frame(x = c(6, 2), y = c(3, 6))
# Empty list
res <- vector("list", 2)
for(i in 1:ncol(df)) {
for (j in 1:nrow(df)) {
res[[j]][i] <- df[j, i] * 4
}
}
res
make <- function(x0, n) {
f <- function(x, m) {
if(m <= n) {
y <- paste(x[[ncol(x)]], x0)
y <- data.frame(y, sort(y))
names(y) <- paste("column", m:(m + 1L), sep = "_")
out <- cbind(x, y)
Recall(out, m + 2L)
} else return(x)
}
x <- data.frame(x0, sort(x0))
names(x) <- paste("column", 1:2, sep = "_")
f(x, 3L)
}
first_column<- c("^","G","A","T","T","A","C","A")
make(first_column, 8)
NA
prep
Error: object 'prep' not found
You might like to try out knitting your document together as html now
to see all the work you have done in the friendly html format.
Hopefully, this has given you some experience with the RStudio
environment as well as objects, variables, data types and functions in
the R language.
You should now have everything you need to tackle the next lesson,
where we will learn how to import and manipulate data in R.
This is the end of the notebook.
LS0tCnRpdGxlOiAiQldUIFByb2plY3QiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KClRoaXMgaXMgYW4gW1IgTWFya2Rvd25dKGh0dHA6Ly9ybWFya2Rvd24ucnN0dWRpby5jb20pIE5vdGVib29rLiAKV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiAKCgpgYGB7cn0KCnJtKGxpc3Q9bHMoKSkKYGBgCgpGaXJzdCwgcnVuIHRoZSBmb2xsb3dpbmcgY2h1bmsgdG8gbG9hZCB0aGUgbmVjZXNzYXJ5IGxpYnJhcmllcy4KCmBgYHtyfQoKbGlicmFyeShzdHJpbmdyKQpsaWJyYXJ5KG90dHIpCmBgYAoKU2Vjb25kLCBydW4gdGhpcyBjaHVuayB0byBtYWtlIHN1cmUgZ3JhcGhpY2FsIG91dHB1dCB3aWxsIHdvcmsuCgpgYGB7cn0KCm9wdGlvbnMoYml0bWFwVHlwZT0nY2Fpcm8nKQpgYGAKYGBge3J9CmxpYnJhcnkocmVhZHIpCmBgYAoKCmBgYHtyfQpsaWJyYXJ5KGRwbHlyKQpgYGAKCgpgYGB7cn0KYXJyYW5nZShzZXEpCmBgYAoKYGBge3J9CiNjb21zZXExPC1saXN0KCJUIiwiRyIsImMiLCJBIiwiXiIsIkEiLCJBIiwiQSIpCiNjb21zZXExCmBgYAoKYGBge3J9CiNjYXQocGFzdGUoY29tc2VxMSksc2VwID0iXG4iKQpgYGAKCgoKYGBge3J9CmNvbXNlcTEgPC0gYygnVCcsICdHJywgJ0MnLCAnQScsICdeJywgJ0EnLCdBJywnQScsJ0EnKQpjb21zZXExCmBgYAoKYGBge3J9CiNjYXQocGFzdGUoeDEpLHNlcCA9IlxuIikKYGBgCgoKYGBge3J9CnNvcnRfY29tc2VxMTwtc29ydChjb21zZXExKQpzb3J0X2NvbXNlcTEKYGBgCgoKI3dyaXRlIHRoZSBjb21wcmVzc2VkIHNlcXVlbmNlIGFzIGEgc3RyaW5nLiB1c2luZyBhIHZhcmlhYmxlIGNhbGxlZCBjb21wcmVzc2VkX3NlcTEKYGBge3J9CmNvbXByZXNzZWRfc2VxMTwtKCJUR0NBXkFBQSIpCmNvbXByZXNzZWRfc2VxMQpgYGAKI2NoYW5nZSB0aGUgc2VxdWVuY2UgZnJvbSBzdHJpbmcgdG8gYmUgYXMgdmVjdG9yIGJ5IHVzaW5nIHRoZSBmdW5jdGlvbiBzdHJzcGxpdC4gdXNpbmcgYSB2YXJpYWJsZSBjYWxsZWQgc2VxdWVuY2VfMQpgYGB7cn0Kc2VxdWVuY2VfMjwtc3Ryc3BsaXQoY29tcHJlc3NlZF9zZXExLCAiIilbWzFdXQpzZXF1ZW5jZV8xPC1zdHJzcGxpdChjb21wcmVzc2VkX3NlcTEsICIiKVtbMV1dCnNlcXVlbmNlXzEKYGBgCiN1c2UgdGhlIGZ1bmN0aW9uIHNvcnQgdG8gbWFrZSB0aGUgc2VxdWVuY2UgaW4gYW4gYWxwaGFiZXRpY2FsIG9yZGVyCmBgYHtyfQpzb3J0KHNlcXVlbmNlXzEpCmBgYAoKCgoKYGBge3J9CmNhdChwYXN0ZShzb3J0KHJlcChzZXF1ZW5jZV8xLCkpLHNlcCA9IlxuIikpCgpgYGAKCgpgYGB7cn0KCmBgYAoKYGBge3J9CmZvcihpIGluIDE6MikgeyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgbmV3IDwtIHJlcChpLCBucm93KGRmKSkgICAgICAgICAgICAgICAgICAgICAgIAogIGRhdGFbICwgbmNvbChkZikgKyAxXSA8LSBuZXcgICAgICAgICAgICAgICAgICAKICBjb2xuYW1lcyhkZilbbmNvbChkZildIDwtIHBhc3RlMCgibmV3IiwgaSkgIAp9CmBgYAoKCgoKYGBge3J9CmZpcnN0X2NvbHVtbjwtIGMoIl4iLCJHIiwiQSIsIlQiLCJUIiwiQSIsIkMiLCJBIikKc2Vjb25kX2NvbHVtbjwtIHNvcnQoZmlyc3RfY29sdW1uKQp0aGlyZF9jb2x1bW48LXBhc3RlKGZpcnN0X2NvbHVtbixzZWNvbmRfY29sdW1uKQoKZm91cnRoX2NvbHVtbjwtc29ydCh0aGlyZF9jb2x1bW4pCiNmaWZ0aF9jb2x1bW48LXBhc3RlKGZpcnN0X2NvbHVtbixmb3VydGhfY29sdW1uKQoKI3NpeHRoX2NvbHVtbjwtc29ydChmaWZ0aF9jb2x1bW4pCiNzZXZlbnRoX2NvbHVtbjwtcGFzdGUoZmlyc3RfY29sdW1uLHNpeHRoX2NvbHVtbikKCiNlaWdodF9jb2x1bW48LXNvcnQoc2V2ZW50aF9jb2x1bW4pCiNuaW50aF9jb3VsbW48LXBhc3RlKGZpcnN0X2NvbHVtbixlaWdodF9jb2x1bW4pCgojdGVudGhfY291bG1uPC1zb3J0KG5pbnRoX2NvdWxtbikKI2VsdmVudGhfY291bG1uPC1wYXN0ZShmaXJzdF9jb2x1bW4sdGVudGhfY291bG1uKQoKI3R3ZWx2ZXRoX2NvdWxtbjwtc29ydChlbHZlbnRoX2NvdWxtbikKCiNkZjwtZGF0YS5mcmFtZShmaXJzdF9jb2x1bW4sc2Vjb25kX2NvbHVtbix0aGlyZF9jb2x1bW4sZm91cnRoX2NvbHVtbixmaWZ0aF9jb2x1bW4sc2l4dGhfY29sdW1uLHNldmVudGhfY29sdW1uLGVpZ2h0X2NvbHVtbixuaW50aF9jb3VsbW4sdGVudGhfY291bG1uLGVsdmVudGhfY291bG1uLHR3ZWx2ZXRoX2NvdWxtbikKZGY8LWRhdGEuZnJhbWUoZmlyc3RfY29sdW1uLHNlY29uZF9jb2x1bW4sdGhpcmRfY29sdW1uKQpkZgpgYGAKCmBgYHtyfQpmaXJzdF9jb2x1bW48LSBjKCJeIiwiRyIsIkEiLCJUIiwiVCIsIkEiLCJDIiwiQSIpCnNlY29uZF9jb2x1bW48LSBzb3J0KGZpcnN0X2NvbHVtbikKdGhpcmRfY29sdW1uPC1wYXN0ZShmaXJzdF9jb2x1bW4sc2Vjb25kX2NvbHVtbikKZm91cnRoX2NvbHVtbjwtc29ydCh0aGlyZF9jb2x1bW4pCiNkZjwtZGF0YS5mcmFtZShmaXJzdF9jb2x1bW4sc2Vjb25kX2NvbHVtbix0aGlyZF9jb2x1bW4pCmRmPC1kYXRhLmZyYW1lKGZpcnN0X2NvbHVtbiwgc2Vjb25kX2NvbHVtbiwgdGhpcmRfY29sdW1uLCBmb3VydGhfY29sdW1uKQpkZgpgYGAKCmBgYHtyfQpybShsaXN0PWxzKCkpCmBgYAoKYGBge3J9CgogZmlyc3RfY29sdW1uPC0gYygiXiIsIkciLCJBIiwiVCIsIlQiLCJBIiwiQyIsIkEiKQpmb3IoaSBpbiBmaXJzdF9jb2x1bW4pIHsgCiAgY29sdW1uX3ZhcmlhYmxlPC0gY2JpbmQoKQogCnNlY29uZF9jb2x1bW48LSBzb3J0KGZpcnN0X2NvbHVtbikKdGhpcmRfY29sdW1uPC1wYXN0ZShmaXJzdF9jb2x1bW4sc2Vjb25kX2NvbHVtbikKZm91cnRoX2NvbHVtbjwtIHNvcnQoZm91cnRoX2NvbHVtbikKbGVuZ3RoXzE8LWxlbmd0aChkZikKICAjbmV3IDwtIHJlcChpLCBucm93KGRmKSkgICAgICAgICAgICAgICAgICAgICAgIAogICNkZlsgLCBuY29sKGRmKSBdIDwtIG5ldyAgICAgICAgICAgICAgICAgIAogICNjb2xuYW1lcyhkZilbbmNvbChkZildIDwtIHBhc3RlMCgibmV3IiwgaSkgCiAgI2RmPC1jYmluZChkZixzb3J0KGZpcnN0X2NvbHVtbikpCn0KZGYKCmBgYAoKCmBgYHtyfQpWaWV3KGRmKQpgYGAKCgoKYGBge3J9Cmxlbmd0aF9maXJzdF9jb2x1bW48LSBsZW5ndGgoZmlyc3RfY29sdW1uKQpsZW5ndGhfZmlyc3RfY29sdW1uCmBgYApgYGB7cn0Kc3RyKGRmKQoKYGBgCgpgYGB7cn0KZGYgPC0gZGF0YS5mcmFtZSh4ID0gYyg2LCAyKSwgeSA9IGMoMywgNikpCgojIEVtcHR5IGxpc3QKcmVzIDwtIHZlY3RvcigibGlzdCIsIDIpCgpmb3IoaSBpbiAxOm5jb2woZGYpKSB7CiAgICBmb3IgKGogaW4gMTpucm93KGRmKSkgewogICAgICAgIHJlc1tbal1dW2ldIDwtIGRmW2osIGldICogNAogICAgfQp9CgpyZXMKYGBgCgoKCgoKYGBge3J9Cm1ha2UgPC0gZnVuY3Rpb24oeDAsIG4pIHsKICBmIDwtIGZ1bmN0aW9uKHgsIG0pIHsKICAgIGlmKG0gPD0gbikgewogICAgICB5IDwtIHBhc3RlKHhbW25jb2woeCldXSwgeDApCiAgICAgIHkgPC0gZGF0YS5mcmFtZSh5LCBzb3J0KHkpKQogICAgICBuYW1lcyh5KSA8LSBwYXN0ZSgiY29sdW1uIiwgbToobSArIDFMKSwgc2VwID0gIl8iKQogICAgICBvdXQgPC0gY2JpbmQoeCwgeSkKICAgICAgUmVjYWxsKG91dCwgbSArIDJMKQogICAgfSBlbHNlIHJldHVybih4KQogIH0KICB4IDwtIGRhdGEuZnJhbWUoeDAsIHNvcnQoeDApKQogIG5hbWVzKHgpIDwtIHBhc3RlKCJjb2x1bW4iLCAxOjIsIHNlcCA9ICJfIikKICBmKHgsIDNMKQp9CgpmaXJzdF9jb2x1bW48LSBjKCJeIiwiRyIsIkEiLCJUIiwiVCIsIkEiLCJDIiwiQSIpCm1ha2UoZmlyc3RfY29sdW1uLCA4KQoKYGBgCgpgYGB7cn0KcHJlcApgYGAKCgoKWW91IG1pZ2h0IGxpa2UgdG8gdHJ5IG91dCBrbml0dGluZyB5b3VyIGRvY3VtZW50IHRvZ2V0aGVyIGFzIGh0bWwgbm93IHRvIHNlZSBhbGwgdGhlIHdvcmsgeW91IGhhdmUgZG9uZSBpbiB0aGUgZnJpZW5kbHkgaHRtbCBmb3JtYXQuCgpIb3BlZnVsbHksIHRoaXMgaGFzIGdpdmVuIHlvdSBzb21lIGV4cGVyaWVuY2Ugd2l0aCB0aGUgUlN0dWRpbyBlbnZpcm9ubWVudCBhcyB3ZWxsIGFzIG9iamVjdHMsIHZhcmlhYmxlcywgZGF0YSB0eXBlcyBhbmQgZnVuY3Rpb25zIGluIHRoZSBSIGxhbmd1YWdlLiAKCllvdSBzaG91bGQgbm93IGhhdmUgZXZlcnl0aGluZyB5b3UgbmVlZCB0byB0YWNrbGUgdGhlIG5leHQgbGVzc29uLCB3aGVyZSB3ZSB3aWxsIGxlYXJuIGhvdyB0byBpbXBvcnQgYW5kIG1hbmlwdWxhdGUgZGF0YSBpbiBSLgoKVGhpcyBpcyB0aGUgZW5kIG9mIHRoZSBub3RlYm9vay4=