MEMANGGIL DATA
df <- read.csv("C:/Users/Saintek10/Documents/R NINDY/iris.csv", header = TRUE)
head (df)
## Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species
## 1 1 5.1 3.5 1.4 0.2 Iris-setosa
## 2 2 4.9 3.0 1.4 0.2 Iris-setosa
## 3 3 4.7 3.2 1.3 0.2 Iris-setosa
## 4 4 4.6 3.1 1.5 0.2 Iris-setosa
## 5 5 5.0 3.6 1.4 0.2 Iris-setosa
## 6 6 5.4 3.9 1.7 0.4 Iris-setosa
MENGHITUNG STATISTIK
summary (df)
## Id SepalLengthCm SepalWidthCm PetalLengthCm
## Min. : 1.00 Min. :4.300 Min. :2.000 Min. :1.000
## 1st Qu.: 38.25 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600
## Median : 75.50 Median :5.800 Median :3.000 Median :4.350
## Mean : 75.50 Mean :5.843 Mean :3.054 Mean :3.759
## 3rd Qu.:112.75 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100
## Max. :150.00 Max. :7.900 Max. :4.400 Max. :6.900
## PetalWidthCm Species
## Min. :0.100 Length:150
## 1st Qu.:0.300 Class :character
## Median :1.300 Mode :character
## Mean :1.199
## 3rd Qu.:1.800
## Max. :2.500
MELIHAT BERAPA KOLOM DAN BARIS
dim(df)
## [1] 150 6
MEMANGGIL VARIABEL SETIAP KOLOM
names(df)
## [1] "Id" "SepalLengthCm" "SepalWidthCm" "PetalLengthCm"
## [5] "PetalWidthCm" "Species"
MODUS
mode <- function(x){
uqx <- unique(x)
tab <- table(x)
sort(uqx)[tab == max(tab)]
}
mode(df$SepalLengthCm)
## [1] 5
mode(df$SepalWidthCm)
## [1] 3
mode(df$PetalLengthCm)
## [1] 1.5
mode(df$PetalWidthCm)
## [1] 0.2
mode(df$Species)
## [1] "Iris-setosa" "Iris-versicolor" "Iris-virginica"
RATA - RATA GEOMETRI
mean.geom <- function(x){
exp(mean(log(x)))
}
mean.geom(df$SepalLengthCm)
## [1] 5.78572
mean.geom(df$SepalWidthCm)
## [1] 3.023582
mean.geom(df$PetalLengthCm)
## [1] 3.239757
mean.geom(df$PetalWidthCm)
## [1] 0.837827
RATA - RATA HARMONI
mean.harm <- function(x){
1/(mean(1/x))
}
mean.harm(df$SepalLengthCm)
## [1] 5.728905
mean.harm(df$SepalWidthCm)
## [1] 2.993137
mean.harm(df$PetalLengthCm)
## [1] 2.696472
mean.harm(df$PetalWidthCm)
## [1] 0.4866465
NILAI SKEWNESS
library(e1071)
skewness(df$SepalLengthCm)
## [1] 0.3086407
skewness(df$SepalWidthCm)
## [1] 0.3274013
skewness(df$PetalLengthCm)
## [1] -0.2689994
skewness(df$PetalWidthCm)
## [1] -0.102906
NILAI KURTOSIS
library(e1071)
kurtosis(df$SepalLengthCm)
## [1] -0.6058125
kurtosis(df$SepalWidthCm)
## [1] 0.1983681
kurtosis(df$PetalLengthCm)
## [1] -1.416683
kurtosis(df$PetalWidthCm)
## [1] -1.357368
BOXPLOT
par(mfrow=c(2,2))
boxplot(df$SepalLengthCm,
xlab="Sepal Length Cm",
ylab="Nilai",
col =c("lightblue"),
main="BOXPLOT")
boxplot(df$SepalWidthCm,
xlab="Sepal Width Cm",
ylab="Nilai",
col =c("lightpink"),
main="BOXPLOT")
boxplot(df$PetalLengthCm,
xlab="Petal Length Cm",
ylab="Nilai",
col =c("lightgreen"),
main="BOXPLOT")
boxplot(df$PetalWidthCm,
xlab="Petal Width Cm",
ylab="Nilai",
col =c("mediumpurple3"),
main="BOXPLOT")
BOXPLOT OF SEPAL LENGTH VS SPECIES
boxplot(Sepal.Length~Species,
data=iris,
main="Sepal Length by Species",
xlab="Species",
ylab="Sepal Length",
col="lightblue")
BOXPLOT OF SEPAL WIDTH VS SPECIES
boxplot(Sepal.Width~Species,
data=iris,
main="Sepal Width by Species",
xlab="Species",
ylab="Sepal Width",
col="lightpink")
BOXPLOT OF PETAL LENGTH VS SPECIES
boxplot(Petal.Length~Species,
data=iris,
main="Petal Length by Species",
xlab="Species",
ylab="Petal Length",
col="lightgreen")
BOXPLOT OF PETAL WIDTH VS SPECIES
boxplot(Petal.Width~Species,
data=iris,
main="Petal Width by Species",
xlab="Species",
ylab="Petal Width",
col="mediumpurple3")
HISTOGRAM
par(mfrow=c(2,2))
hist(df$SepalLengthCm,
xlab="Sepal Length Cm",
ylab="Nilai",
col =c("lightblue"),
main="HISTOGRAM")
hist(df$SepalWidthCm,
xlab="Sepal Width Cm",
ylab="Nilai",
col =c("lightpink"),
main="HISTOGRAM")
hist(df$PetalLengthCm,
xlab="Petal Length Cm",
ylab="Nilai",
col =c("lightgreen"),
main="HISTOGRAM")
hist(df$PetalWidthCm,
xlab="Petal Width Cm",
ylab="Nilai",
col =c("mediumpurple3"),
main="HISTOGRAM")
SCATTERPLOT
par(mfrow=c(2,2))
plot(df$SepalLengthCm,
xlab="Sepal Length Cm",
ylab="Nilai",
col =c("lightblue"),
main="SCATTERPLOT")
plot(df$SepalWidthCm,
xlab="Sepal Width Cm",
ylab="Nilai",
col =c("lightpink"),
main="SCATTERPLOT")
plot(df$PetalLengthCm,
xlab="Petal Length Cm",
ylab="Nilai",
col =c("lightgreen"),
main="SCATTERPLOT")
plot(df$PetalWidthCm,
xlab="Petal Width Cm",
ylab="Nilai",
col =c("mediumpurple3"),
main="SCATTERPLOT")
BAR CHART
barplot(df$SepalLengthCm,
xlab="Sepal Length Cm",
ylab="Nilai",
col =c("lightblue"),
main="BAR CHART")
barplot(df$SepalWidthCm,
xlab="Sepal Width Cm",
ylab="Nilai",
col =c("lightpink"),
main="BAR CHART")
barplot(df$PetalLengthCm,
xlab="Petal Length Cm",
ylab="Nilai",
col =c("lightgreen"),
main="BAR CHART")
barplot(df$PetalWidthCm,
xlab="Petal Width Cm",
ylab="Nilai",
col =c("mediumpurple3"),
main="BAR CHART")
PIE CHART
library(plotrix)
lbl <- c("Iris-setosa","Iris-versicolor","Iris-virginica")
pie(table(df$Species),
col=c("lightpink","lightblue","mediumpurple3"))
pie3D(table(df$Species),
labels = lbl,
explode = 0.1,
main = "Pie Chart of Species",
col=c("lightpink","lightblue","mediumpurple3"))