This is the reproducible pitch presentation for the final course porject of Coursera Data Science Specialization Course 9: Developing Data Science Tools. This document will go over the basics of developing the Shiny app. For more information, please see the following links:
data(swiss)
summary(swiss)
## Fertility Agriculture Examination Education
## Min. :35.00 Min. : 1.20 Min. : 3.00 Min. : 1.00
## 1st Qu.:64.70 1st Qu.:35.90 1st Qu.:12.00 1st Qu.: 6.00
## Median :70.40 Median :54.10 Median :16.00 Median : 8.00
## Mean :70.14 Mean :50.66 Mean :16.49 Mean :10.98
## 3rd Qu.:78.45 3rd Qu.:67.65 3rd Qu.:22.00 3rd Qu.:12.00
## Max. :92.50 Max. :89.70 Max. :37.00 Max. :53.00
## Catholic Infant.Mortality
## Min. : 2.150 Min. :10.80
## 1st Qu.: 5.195 1st Qu.:18.15
## Median : 15.140 Median :20.00
## Mean : 41.144 Mean :19.94
## 3rd Qu.: 93.125 3rd Qu.:21.70
## Max. :100.000 Max. :26.60
inputVar <- 'Fertility'; inputBin <- 10; histVal <- swiss[, inputVar]
hist(histVal, breaks = seq(min(histVal), max(histVal), length.out = inputBin+1),
xlab = inputVar, main = paste('Distribution of', inputVar),
col = 'darkgray', border = 'white')
library(ggplot2)
scatX <- 'Fertility'; scatY <- 'Education'; scatC <- 'Examination'
ggplot(data = swiss, aes(x = Fertility, y = Education, color = Examination)) +
geom_point() + xlab(scatX) + ylab(scatY) + labs(colour = scatC) +
ggtitle(paste('Scatter plot of', scatX, 'vs', scatY)) +
theme(plot.title = element_text(hjust = 0.5))