1:10
## [1] 1 2 3 4 5 6 7 8 9 10
seq(from = 0, to = 10) # Por default se incrementa de 1 en 1
## [1] 0 1 2 3 4 5 6 7 8 9 10
seq(0, 10, by = 2) # Se puede hacer que los incrementos o decrementos sean diferentes a 1
## [1] 0 2 4 6 8 10
x <- 10:1 # Secuencia descendente
x
## [1] 10 9 8 7 6 5 4 3 2 1
rep("Oe", 10)
## [1] "Oe" "Oe" "Oe" "Oe" "Oe" "Oe" "Oe" "Oe" "Oe" "Oe"
indu <- c("Health Care", "Financials", "Info Tech", "Materials", "Industrials")
indu
## [1] "Health Care" "Financials" "Info Tech" "Materials" "Industrials"
1:10
## [1] 1 2 3 4 5 6 7 8 9 10
c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
## [1] 1 2 3 4 5 6 7 8 9 10
indu[1]
## [1] "Health Care"
indu[2:4]
## [1] "Financials" "Info Tech" "Materials"
indu[c(1,5)]
## [1] "Health Care" "Industrials"
indu[5] <- "Real Estate"
indu
## [1] "Health Care" "Financials" "Info Tech" "Materials" "Real Estate"
indu[4:5] <- c("Energy", "Utilities")
indu
## [1] "Health Care" "Financials" "Info Tech" "Energy" "Utilities"
indu[7] <- c("Consumer Staples")
indu
## [1] "Health Care" "Financials" "Info Tech" "Energy"
## [5] "Utilities" NA "Consumer Staples"
indu[-3]
## [1] "Health Care" "Financials" "Energy" "Utilities"
## [5] NA "Consumer Staples"
indu[-c(1,5)]
## [1] "Financials" "Info Tech" "Energy" NA
## [5] "Consumer Staples"
indu <- indu[-(6:7)]
indu
## [1] "Health Care" "Financials" "Info Tech" "Energy" "Utilities"
x <- matrix(data = 1:12, nrow = 3, ncol = 4)
x
## [,1] [,2] [,3] [,4]
## [1,] 1 4 7 10
## [2,] 2 5 8 11
## [3,] 3 6 9 12
x <- matrix(1:12, 3)
x
## [,1] [,2] [,3] [,4]
## [1,] 1 4 7 10
## [2,] 2 5 8 11
## [3,] 3 6 9 12
x <- matrix(1:12, ncol = 4)
x
## [,1] [,2] [,3] [,4]
## [1,] 1 4 7 10
## [2,] 2 5 8 11
## [3,] 3 6 9 12
m <- matrix(1:9, 3, 3)
rbind(m, 101:103)
## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9
## [4,] 101 102 103
cbind(m, 101:103)
## [,1] [,2] [,3] [,4]
## [1,] 1 4 7 101
## [2,] 2 5 8 102
## [3,] 3 6 9 103
x[3, ] # Un solo renglón
## [1] 3 6 9 12
x[, 2] # Una sola columna
## [1] 4 5 6
matrix(x[, 2], ncol = 1)
## [,1]
## [1,] 4
## [2,] 5
## [3,] 6
x[3, 2]
## [1] 6
x[1:3, 1:2]
## [,1] [,2]
## [1,] 1 4
## [2,] 2 5
## [3,] 3 6
z <- array(data = 1:12, dim = c(3, 2, 2)) # objeto con 3 renglones, 2 columnas y 2 “planos”
z
## , , 1
##
## [,1] [,2]
## [1,] 1 4
## [2,] 2 5
## [3,] 3 6
##
## , , 2
##
## [,1] [,2]
## [1,] 7 10
## [2,] 8 11
## [3,] 9 12
Data_frames
qbs <- c("Mahomes", "Garoppolo", "Brady", "Rodgers", "Brees")
teams <- c("Chiefs", "49ers", "Patriots", "Packers", "Saints")
ages <- c(24, 28, 42, 36, 41)
nfl <- data.frame(qbs, teams, ages)
nfl
## qbs teams ages
## 1 Mahomes Chiefs 24
## 2 Garoppolo 49ers 28
## 3 Brady Patriots 42
## 4 Rodgers Packers 36
## 5 Brees Saints 41
View(nfl)
nfl[, 3]
## [1] 24 28 42 36 41
nfl[, "ages"]
## [1] 24 28 42 36 41
nfl$ages
## [1] 24 28 42 36 41
nfl[, c(1, 3)]
## qbs ages
## 1 Mahomes 24
## 2 Garoppolo 28
## 3 Brady 42
## 4 Rodgers 36
## 5 Brees 41
nfl[, c("qbs", "ages")]
## qbs ages
## 1 Mahomes 24
## 2 Garoppolo 28
## 3 Brady 42
## 4 Rodgers 36
## 5 Brees 41
nfl[3,]
## qbs teams ages
## 3 Brady Patriots 42
nfl[c(1,3), 1:2]
## qbs teams
## 1 Mahomes Chiefs
## 3 Brady Patriots
nfl$cities <- c("Kansas", "San Francisco", "New England",
"Green Bay", "New Orleans")
nfl
## qbs teams ages cities
## 1 Mahomes Chiefs 24 Kansas
## 2 Garoppolo 49ers 28 San Francisco
## 3 Brady Patriots 42 New England
## 4 Rodgers Packers 36 Green Bay
## 5 Brees Saints 41 New Orleans
nfl$yards <- NA
nfl
## qbs teams ages cities yards
## 1 Mahomes Chiefs 24 Kansas NA
## 2 Garoppolo 49ers 28 San Francisco NA
## 3 Brady Patriots 42 New England NA
## 4 Rodgers Packers 36 Green Bay NA
## 5 Brees Saints 41 New Orleans NA
nfl$yards <- NULL
nfl
## qbs teams ages cities
## 1 Mahomes Chiefs 24 Kansas
## 2 Garoppolo 49ers 28 San Francisco
## 3 Brady Patriots 42 New England
## 4 Rodgers Packers 36 Green Bay
## 5 Brees Saints 41 New Orleans
pi
## [1] 3.141593
letters
## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
## [20] "t" "u" "v" "w" "x" "y" "z"
LETTERS
## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S"
## [20] "T" "U" "V" "W" "X" "Y" "Z"
month.abb
## [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
month.name
## [1] "January" "February" "March" "April" "May" "June"
## [7] "July" "August" "September" "October" "November" "December"
letters[1:5]
## [1] "a" "b" "c" "d" "e"
month.abb[7:12]
## [1] "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
data()
?mtcars
## starting httpd help server ... done
mtcars
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
View(mtcars)
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
tail(mtcars, 5)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.5 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.5 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.6 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.6 1 1 4 2
names(mtcars)
## [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
## [11] "carb"
dim(mtcars)
## [1] 32 11
nrow(mtcars)
## [1] 32
ncol(mtcars)
## [1] 11
str(mtcars)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
summary(mtcars)
## mpg cyl disp hp
## Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
## 1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
## Median :19.20 Median :6.000 Median :196.3 Median :123.0
## Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
## 3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
## Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
## drat wt qsec vs
## Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000
## 1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000
## Median :3.695 Median :3.325 Median :17.71 Median :0.0000
## Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375
## 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
## Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000
## am gear carb
## Min. :0.0000 Min. :3.000 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
## Median :0.0000 Median :4.000 Median :2.000
## Mean :0.4062 Mean :3.688 Mean :2.812
## 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :1.0000 Max. :5.000 Max. :8.000
#install.packages("psych")
library(psych)
describe(mtcars)
## vars n mean sd median trimmed mad min max range skew
## mpg 1 32 20.09 6.03 19.20 19.70 5.41 10.40 33.90 23.50 0.61
## cyl 2 32 6.19 1.79 6.00 6.23 2.97 4.00 8.00 4.00 -0.17
## disp 3 32 230.72 123.94 196.30 222.52 140.48 71.10 472.00 400.90 0.38
## hp 4 32 146.69 68.56 123.00 141.19 77.10 52.00 335.00 283.00 0.73
## drat 5 32 3.60 0.53 3.70 3.58 0.70 2.76 4.93 2.17 0.27
## wt 6 32 3.22 0.98 3.33 3.15 0.77 1.51 5.42 3.91 0.42
## qsec 7 32 17.85 1.79 17.71 17.83 1.42 14.50 22.90 8.40 0.37
## vs 8 32 0.44 0.50 0.00 0.42 0.00 0.00 1.00 1.00 0.24
## am 9 32 0.41 0.50 0.00 0.38 0.00 0.00 1.00 1.00 0.36
## gear 10 32 3.69 0.74 4.00 3.62 1.48 3.00 5.00 2.00 0.53
## carb 11 32 2.81 1.62 2.00 2.65 1.48 1.00 8.00 7.00 1.05
## kurtosis se
## mpg -0.37 1.07
## cyl -1.76 0.32
## disp -1.21 21.91
## hp -0.14 12.12
## drat -0.71 0.09
## wt -0.02 0.17
## qsec 0.34 0.32
## vs -2.00 0.09
## am -1.92 0.09
## gear -1.07 0.13
## carb 1.26 0.29
v1 <- 101:120
v1
## [1] 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
## [20] 120
m1 <- as.matrix(v1)
m1
## [,1]
## [1,] 101
## [2,] 102
## [3,] 103
## [4,] 104
## [5,] 105
## [6,] 106
## [7,] 107
## [8,] 108
## [9,] 109
## [10,] 110
## [11,] 111
## [12,] 112
## [13,] 113
## [14,] 114
## [15,] 115
## [16,] 116
## [17,] 117
## [18,] 118
## [19,] 119
## [20,] 120
m2 <- matrix(v1, ncol = 4)
m2
## [,1] [,2] [,3] [,4]
## [1,] 101 106 111 116
## [2,] 102 107 112 117
## [3,] 103 108 113 118
## [4,] 104 109 114 119
## [5,] 105 110 115 120
m3 <- as.matrix(mtcars)
m3
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
m4 <- as.matrix(nfl)
m4
## qbs teams ages cities
## [1,] "Mahomes" "Chiefs" "24" "Kansas"
## [2,] "Garoppolo" "49ers" "28" "San Francisco"
## [3,] "Brady" "Patriots" "42" "New England"
## [4,] "Rodgers" "Packers" "36" "Green Bay"
## [5,] "Brees" "Saints" "41" "New Orleans"