Descriptives

How many games:

Note – one 6 p thick game excluded by fiat – the assigned speaker seemed to either really, really not be fluent or not understand the game. They do not provide descriptions and only barely answer when the listeners play 20 questions.

Aimed for 40 each.

Partial means it didn’t go all the rounds, reduced means it has fewer people than it started out with. (Note we also started games even if they were incomplete, so there might be more classification adventures there. )

## # A tibble: 4 × 4
## # Groups:   name [4]
##   name    complete partial reduced
##   <chr>      <int>   <int>   <int>
## 1 2_thick       39       3      NA
## 2 2_thin        35       3      NA
## 3 6_thick       17       2      21
## 4 6_thin        25      NA      19

Of rounds included

How long full games took

Note that this is inaccurate for games where some players kept the tab open but didn’t respond (but we don’t have an easy way to distinguish “exited” from “inactive, but tab open” in this record).

## # A tibble: 4 × 7
##   name    games min_time `25th_time` median_time `75th_time` max_time
##   <chr>   <int>    <dbl>       <dbl>       <dbl>       <dbl>    <dbl>
## 1 2_thick    39       19          26          33          41       68
## 2 2_thin     35       15          31          40          56       87
## 3 6_thick    38       28          51          58          66       89
## 4 6_thin     44       40          54          63          79      108

Exit survey

Most people think they understood directions

## # A tibble: 8 × 3
## # Groups:   name [4]
##   name    correctness     n
##   <chr>   <chr>       <int>
## 1 2_thick yes            82
## 2 2_thin  yes            73
## 3 2_thin  <NA>            1
## 4 6_thick yes           217
## 5 6_thick <NA>            4
## 6 6_thin  no              1
## 7 6_thin  yes           224
## 8 6_thin  <NA>            6

Did you think you were playing with humans? Mostly yes.

## # A tibble: 4 × 4
## # Groups:   name [4]
##   name        no   yes no_answer
##   <chr>    <dbl> <dbl>     <dbl>
## 1 2_thick 0.134  0.854    0.0122
## 2 2_thin  0.0811 0.892    0.0270
## 3 6_thick 0.0995 0.887    0.0136
## 4 6_thin  0.0693 0.909    0.0216

people mostly thought they worked well together

## # A tibble: 4 × 7
## # Groups:   name [4]
##   name    stronglyAgree agree neutral disagree stronglyDisagree   `NA`
##   <chr>           <dbl> <dbl>   <dbl>    <dbl>            <dbl>  <dbl>
## 1 2_thick         0.756 0.195  0.0366   0               0.0122  0     
## 2 2_thin          0.649 0.311  0.0135   0.0135          0       0.0135
## 3 6_thick         0.511 0.330  0.104    0.0271          0.00905 0.0181
## 4 6_thin          0.442 0.463  0.0649   0.0130          0.00433 0.0130

we also have text answers about whether the chat was useful, time was sufficient, pay was fair, and general feedback which I guess I should read sometime.

Trial internal structure

speaker language

Amount of speaker language (total, not cleaned) before selection

you can kind of see the block structure where there’s discontinuities at 12, etc.

how much said before listener selected

How much did the speaker say before the first listener selected?

this is relatively similar across games/sizes, although there’s some order statistics stuff going on.

how much of the time did the speaker say more things between the n-1 and nth selection?

How much feedback do listeners give (per trial)?

Note, most listeners say nothing most of the time, but we’re not showing all the zeros.

Said before that listener selecting (no chit-chat)

These are faceted by game size and how many listeners had selected so far.

note decline in dot density over trials.

Said after selecting (no chit-chat)

Note that we expect more opportunity for pre-selection talk when there are fewer selections, and more post-selection when there are more selections (b/c of number of listeners eligible).

Amount of listener talking declines, mostly because things turn into more zeros. As expected, in 2p games, there’s little talk post selection (because they’ve clicked it, so it should be ~impossible). In 6p games there is some. This is probably mostly listener-listener as some help explain to laggards.

Sbert results

Across game divergence

Within game divergence

Within game similarity

CAMP graphs

Models

From pre-reg

We will do graphical visualizations for accuracy, time taken and utterance reduction.

Our primary analysis will be a Bayesian mixed model for utterance reduction in the words written by the speaker on each trial: words ~ blockchannelgroup_size + (blockchannelgroup_size|tangram)+ (1|tangram*group)+(block|group)

We will also run a logistic Bayesian mixed model on listener accuracy: listener_accurate ~ blockchannelgroup_size + (blockchannelgroup_size|tangram)+ (1|tangram*group)+(block|group) Additionally, we will analyse the effect of the language. Using SBERT embeddings we will embed the concatenation of everything the speaker said in a trial. We will then take pairwise cosine distances of these to look at the following effects. : (divergence across games) For the same condition & block & tangram, distance between utterances from different games. (divergence within games) For the same condition & block & game, distance between utterances for different tangrams. (convergence within games) For the same condition & game & tangram, distance between utterances from different blocks. We plan to look at the similarities for block 1 with all later blocks; block 6 with all earlier blocks; and block N with block N+1. (Note: these SBERT analyses were done as exploratory analyses on the earlier collected conditions.) Additionally, exclusive to the thin channel parts of this condition, we will analyse the distribution of emoji’s produced as a function of block and its relation to accuracy and speaker utterance length.

Reduction of words

rerun for longer with fuller mixed effects

##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: words ~ repNum * channel * gameSize + (repNum * channel * gameSize | tangram) + (1 | tangram:gameId) + (repNum | gameId) 
##    Data: chat_mod (Number of observations: 11285) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Group-Level Effects: 
## ~gameId (Number of levels: 164) 
##                       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)             8.80      0.51     7.89     9.85 1.00      695
## sd(repNum)                2.07      0.12     1.84     2.32 1.01      789
## cor(Intercept,repNum)    -0.90      0.02    -0.93    -0.86 1.00      907
##                       Tail_ESS
## sd(Intercept)             1314
## sd(repNum)                1353
## cor(Intercept,repNum)     1603
## 
## ~tangram (Number of levels: 12) 
##                                                         Estimate Est.Error
## sd(Intercept)                                               2.22      0.49
## sd(repNum)                                                  0.36      0.09
## sd(channelthin)                                             0.37      0.29
## sd(gameSize6)                                               1.26      0.38
## sd(repNum:channelthin)                                      0.17      0.09
## sd(repNum:gameSize6)                                        0.13      0.09
## sd(channelthin:gameSize6)                                   0.55      0.42
## sd(repNum:channelthin:gameSize6)                            0.35      0.15
## cor(Intercept,repNum)                                      -0.64      0.19
## cor(Intercept,channelthin)                                 -0.04      0.32
## cor(repNum,channelthin)                                    -0.02      0.32
## cor(Intercept,gameSize6)                                    0.49      0.23
## cor(repNum,gameSize6)                                      -0.45      0.24
## cor(channelthin,gameSize6)                                  0.07      0.32
## cor(Intercept,repNum:channelthin)                           0.36      0.30
## cor(repNum,repNum:channelthin)                             -0.39      0.30
## cor(channelthin,repNum:channelthin)                        -0.07      0.33
## cor(gameSize6,repNum:channelthin)                           0.32      0.29
## cor(Intercept,repNum:gameSize6)                            -0.15      0.32
## cor(repNum,repNum:gameSize6)                                0.10      0.32
## cor(channelthin,repNum:gameSize6)                          -0.01      0.33
## cor(gameSize6,repNum:gameSize6)                            -0.27      0.33
## cor(repNum:channelthin,repNum:gameSize6)                   -0.08      0.33
## cor(Intercept,channelthin:gameSize6)                       -0.07      0.32
## cor(repNum,channelthin:gameSize6)                           0.08      0.32
## cor(channelthin,channelthin:gameSize6)                     -0.05      0.34
## cor(gameSize6,channelthin:gameSize6)                       -0.07      0.32
## cor(repNum:channelthin,channelthin:gameSize6)              -0.04      0.33
## cor(repNum:gameSize6,channelthin:gameSize6)                 0.02      0.34
## cor(Intercept,repNum:channelthin:gameSize6)                 0.33      0.25
## cor(repNum,repNum:channelthin:gameSize6)                   -0.33      0.26
## cor(channelthin,repNum:channelthin:gameSize6)              -0.09      0.33
## cor(gameSize6,repNum:channelthin:gameSize6)                 0.08      0.28
## cor(repNum:channelthin,repNum:channelthin:gameSize6)        0.00      0.31
## cor(repNum:gameSize6,repNum:channelthin:gameSize6)         -0.09      0.33
## cor(channelthin:gameSize6,repNum:channelthin:gameSize6)    -0.26      0.34
##                                                         l-95% CI u-95% CI Rhat
## sd(Intercept)                                               1.48     3.42 1.00
## sd(repNum)                                                  0.22     0.56 1.00
## sd(channelthin)                                             0.01     1.08 1.00
## sd(gameSize6)                                               0.64     2.13 1.00
## sd(repNum:channelthin)                                      0.01     0.37 1.01
## sd(repNum:gameSize6)                                        0.01     0.36 1.00
## sd(channelthin:gameSize6)                                   0.02     1.58 1.00
## sd(repNum:channelthin:gameSize6)                            0.07     0.66 1.01
## cor(Intercept,repNum)                                      -0.91    -0.19 1.00
## cor(Intercept,channelthin)                                 -0.63     0.58 1.00
## cor(repNum,channelthin)                                    -0.62     0.60 1.00
## cor(Intercept,gameSize6)                                   -0.01     0.85 1.00
## cor(repNum,gameSize6)                                      -0.84     0.07 1.00
## cor(channelthin,gameSize6)                                 -0.57     0.66 1.00
## cor(Intercept,repNum:channelthin)                          -0.33     0.83 1.00
## cor(repNum,repNum:channelthin)                             -0.84     0.29 1.00
## cor(channelthin,repNum:channelthin)                        -0.68     0.56 1.00
## cor(gameSize6,repNum:channelthin)                          -0.34     0.80 1.00
## cor(Intercept,repNum:gameSize6)                            -0.72     0.52 1.00
## cor(repNum,repNum:gameSize6)                               -0.54     0.68 1.00
## cor(channelthin,repNum:gameSize6)                          -0.66     0.62 1.00
## cor(gameSize6,repNum:gameSize6)                            -0.81     0.45 1.00
## cor(repNum:channelthin,repNum:gameSize6)                   -0.67     0.55 1.00
## cor(Intercept,channelthin:gameSize6)                       -0.67     0.56 1.00
## cor(repNum,channelthin:gameSize6)                          -0.56     0.68 1.00
## cor(channelthin,channelthin:gameSize6)                     -0.66     0.59 1.00
## cor(gameSize6,channelthin:gameSize6)                       -0.67     0.59 1.00
## cor(repNum:channelthin,channelthin:gameSize6)              -0.64     0.58 1.00
## cor(repNum:gameSize6,channelthin:gameSize6)                -0.62     0.65 1.00
## cor(Intercept,repNum:channelthin:gameSize6)                -0.23     0.76 1.00
## cor(repNum,repNum:channelthin:gameSize6)                   -0.77     0.22 1.00
## cor(channelthin,repNum:channelthin:gameSize6)              -0.67     0.56 1.00
## cor(gameSize6,repNum:channelthin:gameSize6)                -0.47     0.61 1.00
## cor(repNum:channelthin,repNum:channelthin:gameSize6)       -0.56     0.61 1.00
## cor(repNum:gameSize6,repNum:channelthin:gameSize6)         -0.69     0.55 1.00
## cor(channelthin:gameSize6,repNum:channelthin:gameSize6)    -0.81     0.47 1.00
##                                                         Bulk_ESS Tail_ESS
## sd(Intercept)                                               1586     2154
## sd(repNum)                                                  1990     2976
## sd(channelthin)                                             1614     2299
## sd(gameSize6)                                               2193     2724
## sd(repNum:channelthin)                                      1534     1354
## sd(repNum:gameSize6)                                        1753     1758
## sd(channelthin:gameSize6)                                   1737     2543
## sd(repNum:channelthin:gameSize6)                            1088      908
## cor(Intercept,repNum)                                       2290     3116
## cor(Intercept,channelthin)                                  6081     2951
## cor(repNum,channelthin)                                     6200     3424
## cor(Intercept,gameSize6)                                    3211     3273
## cor(repNum,gameSize6)                                       3431     3266
## cor(channelthin,gameSize6)                                  2687     3358
## cor(Intercept,repNum:channelthin)                           3347     2905
## cor(repNum,repNum:channelthin)                              2761     3060
## cor(channelthin,repNum:channelthin)                         3889     3500
## cor(gameSize6,repNum:channelthin)                           3256     2721
## cor(Intercept,repNum:gameSize6)                             5451     2686
## cor(repNum,repNum:gameSize6)                                4612     2932
## cor(channelthin,repNum:gameSize6)                           3844     3246
## cor(gameSize6,repNum:gameSize6)                             3423     2571
## cor(repNum:channelthin,repNum:gameSize6)                    3680     3379
## cor(Intercept,channelthin:gameSize6)                        5125     3061
## cor(repNum,channelthin:gameSize6)                           5314     3283
## cor(channelthin,channelthin:gameSize6)                      3935     3415
## cor(gameSize6,channelthin:gameSize6)                        3746     3426
## cor(repNum:channelthin,channelthin:gameSize6)               3370     3398
## cor(repNum:gameSize6,channelthin:gameSize6)                 2883     3569
## cor(Intercept,repNum:channelthin:gameSize6)                 3651     2124
## cor(repNum,repNum:channelthin:gameSize6)                    3302     2921
## cor(channelthin,repNum:channelthin:gameSize6)               2593     3277
## cor(gameSize6,repNum:channelthin:gameSize6)                 3542     3390
## cor(repNum:channelthin,repNum:channelthin:gameSize6)        2806     3279
## cor(repNum:gameSize6,repNum:channelthin:gameSize6)          2915     3540
## cor(channelthin:gameSize6,repNum:channelthin:gameSize6)     2104     3008
## 
## ~tangram:gameId (Number of levels: 1968) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     2.59      0.10     2.40     2.78 1.00     1762     2315
## 
## Population-Level Effects: 
##                              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                       15.22      1.57    12.10    18.29 1.02      278
## repNum                          -2.33      0.36    -3.03    -1.64 1.01      279
## channelthin                      0.56      2.00    -3.26     4.61 1.01      320
## gameSize6                        7.15      1.85     3.36    10.67 1.01      329
## repNum:channelthin               0.33      0.48    -0.62     1.27 1.01      325
## repNum:gameSize6                -1.15      0.46    -2.06    -0.24 1.01      333
## channelthin:gameSize6           -2.14      2.57    -7.05     2.99 1.01      403
## repNum:channelthin:gameSize6     0.65      0.65    -0.66     1.91 1.00      444
##                              Tail_ESS
## Intercept                         724
## repNum                            866
## channelthin                       535
## gameSize6                         546
## repNum:channelthin                688
## repNum:gameSize6                  567
## channelthin:gameSize6             735
## repNum:channelthin:gameSize6      755
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     6.61      0.05     6.52     6.71 1.00     4160     3078
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Accuracy model

##  Family: bernoulli 
##   Links: mu = logit 
## Formula: correct.num ~ repNum * channel * gameSize + (repNum * channel * gameSize | tangram) + (1 | tangram:gameId) + (repNum | gameId) 
##    Data: acc_data (Number of observations: 29356) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Group-Level Effects: 
## ~gameId (Number of levels: 164) 
##                       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)             0.45      0.04     0.37     0.54 1.00     1960
## sd(repNum)                0.25      0.02     0.21     0.29 1.00     1451
## cor(Intercept,repNum)     0.14      0.13    -0.10     0.39 1.01      635
##                       Tail_ESS
## sd(Intercept)             2739
## sd(repNum)                2379
## cor(Intercept,repNum)     1176
## 
## ~tangram (Number of levels: 12) 
##                                                         Estimate Est.Error
## sd(Intercept)                                               0.43      0.05
## sd(repNum)                                                  0.03      0.02
## sd(channelthin)                                             0.09      0.06
## sd(gameSize6)                                               0.06      0.04
## sd(repNum:channelthin)                                      0.04      0.03
## sd(repNum:gameSize6)                                        0.03      0.02
## sd(channelthin:gameSize6)                                   0.08      0.05
## sd(repNum:channelthin:gameSize6)                            0.05      0.03
## cor(Intercept,repNum)                                      -0.21      0.30
## cor(Intercept,channelthin)                                  0.28      0.29
## cor(repNum,channelthin)                                    -0.05      0.33
## cor(Intercept,gameSize6)                                    0.04      0.32
## cor(repNum,gameSize6)                                      -0.02      0.34
## cor(channelthin,gameSize6)                                  0.04      0.33
## cor(Intercept,repNum:channelthin)                           0.15      0.28
## cor(repNum,repNum:channelthin)                             -0.07      0.34
## cor(channelthin,repNum:channelthin)                         0.00      0.32
## cor(gameSize6,repNum:channelthin)                           0.05      0.33
## cor(Intercept,repNum:gameSize6)                            -0.18      0.30
## cor(repNum,repNum:gameSize6)                               -0.04      0.33
## cor(channelthin,repNum:gameSize6)                          -0.03      0.33
## cor(gameSize6,repNum:gameSize6)                            -0.04      0.34
## cor(repNum:channelthin,repNum:gameSize6)                    0.01      0.32
## cor(Intercept,channelthin:gameSize6)                        0.18      0.31
## cor(repNum,channelthin:gameSize6)                          -0.03      0.33
## cor(channelthin,channelthin:gameSize6)                      0.00      0.33
## cor(gameSize6,channelthin:gameSize6)                       -0.03      0.34
## cor(repNum:channelthin,channelthin:gameSize6)              -0.03      0.33
## cor(repNum:gameSize6,channelthin:gameSize6)                -0.05      0.33
## cor(Intercept,repNum:channelthin:gameSize6)                 0.23      0.27
## cor(repNum,repNum:channelthin:gameSize6)                   -0.06      0.33
## cor(channelthin,repNum:channelthin:gameSize6)              -0.01      0.33
## cor(gameSize6,repNum:channelthin:gameSize6)                -0.01      0.33
## cor(repNum:channelthin,repNum:channelthin:gameSize6)       -0.03      0.33
## cor(repNum:gameSize6,repNum:channelthin:gameSize6)         -0.10      0.34
## cor(channelthin:gameSize6,repNum:channelthin:gameSize6)    -0.06      0.33
##                                                         l-95% CI u-95% CI Rhat
## sd(Intercept)                                               0.34     0.53 1.00
## sd(repNum)                                                  0.00     0.08 1.00
## sd(channelthin)                                             0.01     0.22 1.00
## sd(gameSize6)                                               0.00     0.17 1.00
## sd(repNum:channelthin)                                      0.00     0.10 1.00
## sd(repNum:gameSize6)                                        0.00     0.08 1.00
## sd(channelthin:gameSize6)                                   0.01     0.21 1.00
## sd(repNum:channelthin:gameSize6)                            0.00     0.12 1.00
## cor(Intercept,repNum)                                      -0.72     0.42 1.00
## cor(Intercept,channelthin)                                 -0.37     0.76 1.00
## cor(repNum,channelthin)                                    -0.65     0.59 1.00
## cor(Intercept,gameSize6)                                   -0.58     0.64 1.00
## cor(repNum,gameSize6)                                      -0.65     0.63 1.00
## cor(channelthin,gameSize6)                                 -0.62     0.66 1.00
## cor(Intercept,repNum:channelthin)                          -0.44     0.65 1.00
## cor(repNum,repNum:channelthin)                             -0.68     0.60 1.00
## cor(channelthin,repNum:channelthin)                        -0.61     0.62 1.00
## cor(gameSize6,repNum:channelthin)                          -0.58     0.65 1.00
## cor(Intercept,repNum:gameSize6)                            -0.70     0.46 1.00
## cor(repNum,repNum:gameSize6)                               -0.65     0.58 1.00
## cor(channelthin,repNum:gameSize6)                          -0.65     0.61 1.00
## cor(gameSize6,repNum:gameSize6)                            -0.66     0.62 1.00
## cor(repNum:channelthin,repNum:gameSize6)                   -0.60     0.62 1.00
## cor(Intercept,channelthin:gameSize6)                       -0.47     0.71 1.00
## cor(repNum,channelthin:gameSize6)                          -0.65     0.62 1.00
## cor(channelthin,channelthin:gameSize6)                     -0.63     0.63 1.00
## cor(gameSize6,channelthin:gameSize6)                       -0.66     0.61 1.00
## cor(repNum:channelthin,channelthin:gameSize6)              -0.65     0.61 1.00
## cor(repNum:gameSize6,channelthin:gameSize6)                -0.66     0.60 1.00
## cor(Intercept,repNum:channelthin:gameSize6)                -0.36     0.69 1.00
## cor(repNum,repNum:channelthin:gameSize6)                   -0.66     0.58 1.00
## cor(channelthin,repNum:channelthin:gameSize6)              -0.62     0.61 1.00
## cor(gameSize6,repNum:channelthin:gameSize6)                -0.65     0.62 1.00
## cor(repNum:channelthin,repNum:channelthin:gameSize6)       -0.63     0.64 1.00
## cor(repNum:gameSize6,repNum:channelthin:gameSize6)         -0.71     0.57 1.00
## cor(channelthin:gameSize6,repNum:channelthin:gameSize6)    -0.66     0.57 1.00
##                                                         Bulk_ESS Tail_ESS
## sd(Intercept)                                               2768     2530
## sd(repNum)                                                  1843     2202
## sd(channelthin)                                             1601     1449
## sd(gameSize6)                                               3132     2570
## sd(repNum:channelthin)                                      1827     1802
## sd(repNum:gameSize6)                                        1945     2270
## sd(channelthin:gameSize6)                                   2071     2276
## sd(repNum:channelthin:gameSize6)                            1430     1709
## cor(Intercept,repNum)                                       4031     2607
## cor(Intercept,channelthin)                                  3482     2702
## cor(repNum,channelthin)                                     4365     3243
## cor(Intercept,gameSize6)                                    6329     3067
## cor(repNum,gameSize6)                                       4908     3231
## cor(channelthin,gameSize6)                                  4039     3146
## cor(Intercept,repNum:channelthin)                           3849     2846
## cor(repNum,repNum:channelthin)                              4195     3161
## cor(channelthin,repNum:channelthin)                         3292     3143
## cor(gameSize6,repNum:channelthin)                           3398     3362
## cor(Intercept,repNum:gameSize6)                             3983     2785
## cor(repNum,repNum:gameSize6)                                4911     3338
## cor(channelthin,repNum:gameSize6)                           3763     2904
## cor(gameSize6,repNum:gameSize6)                             3434     3265
## cor(repNum:channelthin,repNum:gameSize6)                    3441     3227
## cor(Intercept,channelthin:gameSize6)                        4329     3090
## cor(repNum,channelthin:gameSize6)                           4683     3022
## cor(channelthin,channelthin:gameSize6)                      3851     3155
## cor(gameSize6,channelthin:gameSize6)                        3526     3325
## cor(repNum:channelthin,channelthin:gameSize6)               3133     3056
## cor(repNum:gameSize6,channelthin:gameSize6)                 3098     3242
## cor(Intercept,repNum:channelthin:gameSize6)                 3764     2768
## cor(repNum,repNum:channelthin:gameSize6)                    3339     3268
## cor(channelthin,repNum:channelthin:gameSize6)               3195     3357
## cor(gameSize6,repNum:channelthin:gameSize6)                 2814     3444
## cor(repNum:channelthin,repNum:channelthin:gameSize6)        2776     3153
## cor(repNum:gameSize6,repNum:channelthin:gameSize6)          2949     3474
## cor(channelthin:gameSize6,repNum:channelthin:gameSize6)     2711     3438
## 
## ~tangram:gameId (Number of levels: 1968) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.70      0.03     0.64     0.77 1.00     1692     2761
## 
## Population-Level Effects: 
##                              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                        1.79      0.17     1.45     2.13 1.00     1653
## repNum                           0.55      0.06     0.42     0.67 1.00     1658
## channelthin                     -0.34      0.17    -0.66    -0.01 1.00     2133
## gameSize6                       -0.44      0.15    -0.73    -0.16 1.00     2207
## repNum:channelthin              -0.09      0.09    -0.26     0.07 1.00     1722
## repNum:gameSize6                -0.17      0.08    -0.33    -0.02 1.00     1315
## channelthin:gameSize6            0.22      0.19    -0.16     0.60 1.00     2243
## repNum:channelthin:gameSize6    -0.02      0.10    -0.23     0.18 1.00     1384
##                              Tail_ESS
## Intercept                        2551
## repNum                           2475
## channelthin                      2722
## gameSize6                        2163
## repNum:channelthin               2356
## repNum:gameSize6                 2071
## channelthin:gameSize6            2750
## repNum:channelthin:gameSize6     2104
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Sbert models

##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: sim ~ repNum * channel * gameSize + (1 | tangram) 
##    Data: game_divergence (Number of observations: 217188) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Group-Level Effects: 
## ~tangram (Number of levels: 12) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.07      0.01     0.05     0.10 1.01      509      606
## 
## Population-Level Effects: 
##                              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                        0.41      0.02     0.37     0.45 1.01      421
## repNum                          -0.02      0.00    -0.02    -0.02 1.00     2997
## channelthin                      0.01      0.00     0.01     0.02 1.00     1981
## gameSize6                        0.05      0.00     0.05     0.05 1.00     2375
## repNum:channelthin               0.00      0.00     0.00     0.00 1.00     2356
## repNum:gameSize6                -0.01      0.00    -0.01    -0.01 1.00     2648
## channelthin:gameSize6           -0.03      0.00    -0.04    -0.02 1.00     1910
## repNum:channelthin:gameSize6     0.02      0.00     0.02     0.02 1.00     2244
##                              Tail_ESS
## Intercept                         493
## repNum                           3086
## channelthin                      2192
## gameSize6                        2333
## repNum:channelthin               3064
## repNum:gameSize6                 2757
## channelthin:gameSize6            1924
## repNum:channelthin:gameSize6     2501
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.19      0.00     0.19     0.19 1.00     3130     2200
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: sim ~ repNum * channel * gameSize + (1 | gameId) 
##    Data: tangram_distinctive (Number of observations: 62106) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Group-Level Effects: 
## ~gameId (Number of levels: 164) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.09      0.01     0.08     0.10 1.05      113      230
## 
## Population-Level Effects: 
##                              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                        0.38      0.01     0.35     0.41 1.06       47
## repNum                          -0.03      0.00    -0.03    -0.03 1.00     4235
## channelthin                      0.04      0.02    -0.01     0.07 1.06       64
## gameSize6                        0.07      0.02     0.03     0.11 1.10       31
## repNum:channelthin              -0.00      0.00    -0.00     0.00 1.00     4317
## repNum:gameSize6                -0.01      0.00    -0.01    -0.01 1.00     4361
## channelthin:gameSize6           -0.06      0.03    -0.10    -0.00 1.03       72
## repNum:channelthin:gameSize6     0.01      0.00     0.01     0.01 1.00     4252
##                              Tail_ESS
## Intercept                         107
## repNum                           3380
## channelthin                       109
## gameSize6                          48
## repNum:channelthin               3372
## repNum:gameSize6                 3649
## channelthin:gameSize6             153
## repNum:channelthin:gameSize6     3243
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.18      0.00     0.18     0.18 1.00     4366     3085
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: sim ~ earlier * channel * gameSize * samespeaker 
##    Data: to_last (Number of observations: 9252) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##                                                       Estimate Est.Error
## Intercept                                                 0.53      0.10
## earlier                                                   0.06      0.09
## channelthin                                              -0.01      0.10
## gameSize6                                                -0.06      0.09
## samespeakersame_speaker                                   0.06      0.10
## earlier:channelthin                                      -0.01      0.09
## earlier:gameSize6                                        -0.01      0.09
## channelthin:gameSize6                                     0.04      0.09
## earlier:samespeakersame_speaker                           0.02      0.09
## channelthin:samespeakersame_speaker                       0.01      0.10
## gameSize6:samespeakersame_speaker                        -0.01      0.09
## earlier:channelthin:gameSize6                            -0.02      0.09
## earlier:channelthin:samespeakersame_speaker              -0.01      0.09
## earlier:gameSize6:samespeakersame_speaker                 0.01      0.09
## channelthin:gameSize6:samespeakersame_speaker             0.02      0.10
## earlier:channelthin:gameSize6:samespeakersame_speaker    -0.00      0.09
##                                                       l-95% CI u-95% CI Rhat
## Intercept                                                 0.34     0.71 1.01
## earlier                                                  -0.11     0.25 1.01
## channelthin                                              -0.19     0.18 1.01
## gameSize6                                                -0.24     0.12 1.00
## samespeakersame_speaker                                  -0.13     0.25 1.01
## earlier:channelthin                                      -0.19     0.17 1.01
## earlier:gameSize6                                        -0.19     0.17 1.00
## channelthin:gameSize6                                    -0.14     0.23 1.00
## earlier:samespeakersame_speaker                          -0.17     0.19 1.01
## channelthin:samespeakersame_speaker                      -0.19     0.20 1.01
## gameSize6:samespeakersame_speaker                        -0.20     0.17 1.01
## earlier:channelthin:gameSize6                            -0.19     0.17 1.01
## earlier:channelthin:samespeakersame_speaker              -0.19     0.17 1.01
## earlier:gameSize6:samespeakersame_speaker                -0.16     0.20 1.00
## channelthin:gameSize6:samespeakersame_speaker            -0.17     0.21 1.00
## earlier:channelthin:gameSize6:samespeakersame_speaker    -0.19     0.17 1.00
##                                                       Bulk_ESS Tail_ESS
## Intercept                                                 1077     1334
## earlier                                                    875     1057
## channelthin                                               1083     1322
## gameSize6                                                 1054     1161
## samespeakersame_speaker                                   1073     1279
## earlier:channelthin                                        874     1072
## earlier:gameSize6                                          887     1059
## channelthin:gameSize6                                     1057     1270
## earlier:samespeakersame_speaker                            875     1024
## channelthin:samespeakersame_speaker                       1110     1335
## gameSize6:samespeakersame_speaker                         1068     1227
## earlier:channelthin:gameSize6                              886     1051
## earlier:channelthin:samespeakersame_speaker                882     1057
## earlier:gameSize6:samespeakersame_speaker                  890     1058
## channelthin:gameSize6:samespeakersame_speaker             1116     1333
## earlier:channelthin:gameSize6:samespeakersame_speaker      898     1118
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.22      0.00     0.22     0.22 1.00     2562     2109
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

tSNE

PoS

Sloppy first attempt – we group by trial & speaker, summarize & pct-ize

ToDo the naive word count and the PoS sum are not always equal (off in both direction sometimes) – some punctuation normalization may help?

Following Robert’s analysis. First graph is raw-averages, second is grand-average (first do pcts for each speaker-trial, then do grand avg)

Diff between them shows that where there is more reduction, there is more noun-yness.

Emoji analysis

What fraction of listener-trials produce any emoji? (Grouped by game, but measured per listener)

Of emoji that are used, what’s the distribution?

A few people sent many copies of the same emoji over the course of a single trial which could sway things (see above graph), so we check by binarizing by did that listener produce that emoji on that trial and then summarizing.

Throw all the models at this

Note, we’re being quick and dirty here with lmer.

log words

## 
## Call:
## lm(formula = log_words ~ repNum * channel * gameSize, data = chat_mod)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.94570 -0.46080  0.08428  0.55429  2.82290 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   2.50986    0.02619  95.825  < 2e-16 ***
## repNum                       -0.25794    0.00874 -29.513  < 2e-16 ***
## channelthin                   0.04163    0.03832   1.086   0.2774    
## gameSize6                     0.43584    0.03775  11.546  < 2e-16 ***
## repNum:channelthin            0.05267    0.01274   4.135 3.58e-05 ***
## repNum:gameSize6             -0.03958    0.01254  -3.157   0.0016 ** 
## channelthin:gameSize6        -0.13153    0.05356  -2.456   0.0141 *  
## repNum:channelthin:gameSize6  0.05263    0.01773   2.968   0.0030 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8035 on 11277 degrees of freedom
## Multiple R-squared:  0.2416, Adjusted R-squared:  0.2411 
## F-statistic: 513.2 on 7 and 11277 DF,  p-value: < 2.2e-16

log block

Reduction

## 
## Call:
## lm(formula = words ~ log_block * channel * gameSize, data = chat_mod)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -23.665  -5.642  -1.910   3.354 101.599 
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      16.5757     0.3510  47.220  < 2e-16 ***
## log_block                        -6.5671     0.2829 -23.212  < 2e-16 ***
## channelthin                       0.4013     0.5120   0.784   0.4332    
## gameSize6                         8.0894     0.5086  15.904  < 2e-16 ***
## log_block:channelthin             0.8041     0.4116   1.953   0.0508 .  
## log_block:gameSize6              -3.4921     0.4079  -8.562  < 2e-16 ***
## channelthin:gameSize6            -3.5472     0.7199  -4.928 8.45e-07 ***
## log_block:channelthin:gameSize6   2.7758     0.5761   4.818 1.47e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.264 on 11277 degrees of freedom
## Multiple R-squared:  0.2196, Adjusted R-squared:  0.2192 
## F-statistic: 453.5 on 7 and 11277 DF,  p-value: < 2.2e-16

Why not try log-log ?

## 
## Call:
## lm(formula = log_words ~ log_block * channel * gameSize, data = chat_mod)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1208 -0.4759  0.0837  0.5546  2.6942 
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      2.67583    0.03048  87.781  < 2e-16 ***
## log_block                       -0.74058    0.02457 -30.144  < 2e-16 ***
## channelthin                     -0.01161    0.04446  -0.261  0.79410    
## gameSize6                        0.44497    0.04417  10.074  < 2e-16 ***
## log_block:channelthin            0.16735    0.03574   4.682 2.88e-06 ***
## log_block:gameSize6             -0.09510    0.03542  -2.685  0.00726 ** 
## channelthin:gameSize6           -0.16344    0.06251  -2.615  0.00895 ** 
## log_block:channelthin:gameSize6  0.14828    0.05003   2.964  0.00304 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8045 on 11277 degrees of freedom
## Multiple R-squared:  0.2397, Adjusted R-squared:  0.2393 
## F-statistic:   508 on 7 and 11277 DF,  p-value: < 2.2e-16

Accuracy

Note that this accuracy is of players who clicked something!

## 
## Call:
## glm(formula = correct.num ~ log_block * channel * gameSize, family = "binomial", 
##     data = acc_data)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5469   0.4152   0.5574   0.6414   0.8008  
## 
## Coefficients:
##                                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                       1.4332     0.1038  13.812  < 2e-16 ***
## log_block                         0.9881     0.1040   9.504  < 2e-16 ***
## channelthin                      -0.3491     0.1426  -2.448 0.014378 *  
## gameSize6                        -0.3778     0.1134  -3.331 0.000864 ***
## log_block:channelthin            -0.1656     0.1384  -1.196 0.231589    
## log_block:gameSize6              -0.3804     0.1116  -3.407 0.000657 ***
## channelthin:gameSize6             0.2665     0.1556   1.713 0.086756 .  
## log_block:channelthin:gameSize6   0.0103     0.1487   0.069 0.944804    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 26173  on 29355  degrees of freedom
## Residual deviance: 25396  on 29348  degrees of freedom
## AIC: 25412
## 
## Number of Fisher Scoring iterations: 5