# ===== NO 4a : diketahui
alfa = 0.1
ragam = 0.5
marginoferror = 0.05
sigma = sqrt(ragam)
# mencari jumlah sampel (rata-rata)
# formula : n = ((sigma*z)/m)^2
jumlah_sampel = function(alfa,sigma,m){
z = qnorm(p = (1-(alfa/2)), lower.tail = TRUE)
n = ceiling(((sigma*z)/m)^2)
n
}
jumlah_sampel(0.1,sqrt(0.5),0.05)
## [1] 542
# ===== NO 4b : n turun maka taraf signifikan diturunkan tapi margin of error (kesalahan percontohan) naik
# ===== NO 4c :
# selang kepercayaan rata-rata satu populasi diketahui xbar
ci_rata_xbar = function(xbar,alfa,sigma,n){
z = qnorm(p = (1-(alfa/2)), lower.tail = TRUE)
t = qt(p = alfa/2, df = n-1, lower.tail = FALSE)
if (sigma == 0 ) #ragam populasi tidak diketahui
{
s = sd(data)
if (n >= 30) {
m = z*s/sqrt(n)
}
else {
m = t*s/sqrt(n)
}
}
else #ragam populasi diketahui
{
m = z*sigma/sqrt(n)
}
ci_lower = xbar - m
ci_upper = xbar + m
con_interval = cbind (ci_lower, ci_upper)
con_interval
}
ci_rata_xbar(5,0.04,sqrt(0.5),25)
## ci_lower ci_upper
## [1,] 4.709556 5.290444
# ===== NO 5 :
set.seed(12029)
data1 = sample(5:10, 10, replace = T)
data2 = rnorm(10,3,2*029)
# ===== NO 5a :
# selang kepercayaan ragam satu populasi
ci_ragam = function (data,alfa,sigma,n){
chisquare_1 = qchisq(p = alfa/2, df = n-1, lower.tail=FALSE)
chisquare_2 = qchisq(p = 1-(alfa/2), df = n-1, lower.tail=FALSE)
if (sigma == 0) #ragam populasi tidak diketahui
{
s = sd(data)
lower = ((n-1)*s^2)/chisquare_1
upper = ((n-1)*s^2)/chisquare_2
}
else #ragam populasi diketahui
{
lower = ((n-1)*sigma^2)/chisquare_1
upper = ((n-1)*sigma^2)/chisquare_2
}
con_interval = cbind(lower,upper)
con_interval
}
ci_ragam(data1,0.05,0,10)
## lower upper
## [1,] 1.072399 7.554466
# ===== NO 5b :
# selang kepercayaan rata-rata satu populasi diketahui kumpulan data
ci_rata = function(data,alfa,sigma,n){
xbar = mean(data)
z = qnorm(p = (1-(alfa/2)), lower.tail = TRUE)
t = qt(p = alfa/2, df = n-1, lower.tail = FALSE)
if (sigma == 0 ) #ragam populasi tidak diketahui
{
s = sd(data)
if (n >= 30) {
m = z*s/sqrt(n)
}
else {
m = t*s/sqrt(n)
}
}
else #ragam populasi diketahui
{
m = z*sigma/sqrt(n)
}
ci_lower = xbar - m
ci_upper = xbar + m
con_interval = cbind (ci_lower, ci_upper)
con_interval
}
ci_rata(data2,0.05,0,10)
## ci_lower ci_upper
## [1,] -40.27998 57.64338