Nonlinear Regression Part 1
#install.packages("MultiKink")
library(MultiKink)
library(MatrixModels)
library(tidyverse)## -- Attaching packages --------------------------------------- tidyverse 1.3.2 --
## v ggplot2 3.3.6 v purrr 0.3.4
## v tibble 3.1.8 v dplyr 1.0.10
## v tidyr 1.2.1 v stringr 1.4.1
## v readr 2.1.2 v forcats 0.5.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(ggplot2)
library(dplyr)
library(purrr)
library(rsample)
library(mlr3measures)## In order to avoid name clashes, do not attach 'mlr3measures'. Instead, only load the namespace with `requireNamespace("mlrmeasures")` and access the measures directly via `::`, e.g. `mlr3measures::auc()`.
set.seed(123)
data.x <- rnorm(1000,1,1)
err <- rnorm(1000)
y <- 5+2*data.x+3*data.x^2+err
plot(data.x,y,xlim=c(-2,5), ylim=c(-10,70))#Regresi Linier
lin.mod <-lm( y~data.x)
plot( data.x,y,xlim=c( -2,5), ylim=c( -10,70))
lines(data.x,lin.mod$fitted.values,col="red")summary(lin.mod)##
## Call:
## lm(formula = y ~ data.x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.686 -2.574 -1.428 1.195 27.185
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.6056 0.1902 24.22 <2e-16 ***
## data.x 8.3790 0.1340 62.54 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.2 on 998 degrees of freedom
## Multiple R-squared: 0.7967, Adjusted R-squared: 0.7965
## F-statistic: 3911 on 1 and 998 DF, p-value: < 2.2e-16
#Polynomial
pol.mod <- lm( y~data.x+I(data.x^2)) #ordo 2
ix <- sort( data.x,index.return=T)$ix #ix=observasi keberapa
plot(data.x,y,xlim=c(-2,5), ylim=c(-10,70))
lines(data.x[ix], pol.mod$fitted.values[ix],col="blue", cex=2)summary(pol.mod)##
## Call:
## lm(formula = y ~ data.x + I(data.x^2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0319 -0.6942 0.0049 0.7116 3.2855
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.95193 0.04568 108.41 <2e-16 ***
## data.x 2.10732 0.05861 35.95 <2e-16 ***
## I(data.x^2) 2.99081 0.02338 127.93 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.007 on 997 degrees of freedom
## Multiple R-squared: 0.9883, Adjusted R-squared: 0.9883
## F-statistic: 4.221e+04 on 2 and 997 DF, p-value: < 2.2e-16
#Fungsi Tangga
#regresi fungsi tangga
range( data.x) #nilai min dan max## [1] -1.809775 4.241040
c1 <- as.factor(ifelse(data.x<=0,1,0))
c2 <- as.factor(ifelse(data.x<=2 & data.x>0,1,0))
c3 <- as.factor(ifelse(data.x>2,1,0))
data.frame(y,c1,c2,c3)## y c1 c2 c3
## 1 5.462795 0 1 0
## 2 7.277570 0 1 0
## 3 29.740401 0 0 1
## 4 10.446806 0 1 0
## 5 8.535105 0 1 0
## 6 33.585437 0 0 1
## 7 14.574387 0 1 0
## 8 7.096857 1 0 0
## 9 6.605676 0 1 0
## 10 6.583589 0 1 0
## 11 27.085174 0 0 1
## 12 16.099135 0 1 0
## 13 12.469313 0 1 0
## 14 11.391246 0 1 0
## 15 6.268902 0 1 0
## 16 34.061532 0 0 1
## 17 14.953912 0 1 0
## 18 4.607911 1 0 0
## 19 17.372137 0 1 0
## 20 8.637511 0 1 0
## 21 4.714063 1 0 0
## 22 8.235813 0 1 0
## 23 6.348592 1 0 0
## 24 6.661114 0 1 0
## 25 4.523213 0 1 0
## 26 5.269813 1 0 0
## 27 20.461505 0 1 0
## 28 12.712831 0 1 0
## 29 5.200923 1 0 0
## 30 25.467896 0 0 1
## 31 12.760394 0 1 0
## 32 8.200761 0 1 0
## 33 18.610306 0 1 0
## 34 18.880405 0 1 0
## 35 19.533239 0 1 0
## 36 15.794905 0 1 0
## 37 15.618734 0 1 0
## 38 9.944538 0 1 0
## 39 7.888050 0 1 0
## 40 9.212695 0 1 0
## 41 4.867850 0 1 0
## 42 9.072481 0 1 0
## 43 4.591582 1 0 0
## 44 41.203925 0 0 1
## 45 24.505304 0 0 1
## 46 3.778849 1 0 0
## 47 5.950419 0 1 0
## 48 6.425578 0 1 0
## 49 19.816515 0 1 0
## 50 9.409663 0 1 0
## 51 12.550493 0 1 0
## 52 9.584224 0 1 0
## 53 10.133043 0 1 0
## 54 25.616355 0 0 1
## 55 9.504660 0 1 0
## 56 29.615519 0 0 1
## 57 3.999430 1 0 0
## 58 15.756783 0 1 0
## 59 11.753185 0 1 0
## 60 12.425156 0 1 0
## 61 14.951428 0 1 0
## 62 6.125411 0 1 0
## 63 8.783559 0 1 0
## 64 6.000432 1 0 0
## 65 4.709396 1 0 0
## 66 11.728691 0 1 0
## 67 13.099209 0 1 0
## 68 10.890249 0 1 0
## 69 19.858745 0 1 0
## 70 40.788322 0 0 1
## 71 7.330223 0 1 0
## 72 7.151487 1 0 0
## 73 20.054896 0 0 1
## 74 5.252889 0 1 0
## 75 6.258887 0 1 0
## 76 20.909026 0 0 1
## 77 8.479333 0 1 0
## 78 4.370375 1 0 0
## 79 11.443481 0 1 0
## 80 8.216232 0 1 0
## 81 11.951257 0 1 0
## 82 13.860188 0 1 0
## 83 7.677520 0 1 0
## 84 14.708813 0 1 0
## 85 9.041742 0 1 0
## 86 11.960870 0 1 0
## 87 21.492358 0 0 1
## 88 14.967942 0 1 0
## 89 7.258541 0 1 0
## 90 21.401366 0 0 1
## 91 22.679085 0 1 0
## 92 12.911986 0 1 0
## 93 12.653644 0 1 0
## 94 7.176799 0 1 0
## 95 25.808377 0 0 1
## 96 6.723145 0 1 0
## 97 42.291071 0 0 1
## 98 30.348194 0 0 1
## 99 8.765160 0 1 0
## 100 4.704369 1 0 0
## 101 6.746772 0 1 0
## 102 13.053660 0 1 0
## 103 7.272467 0 1 0
## 104 6.181229 0 1 0
## 105 5.264063 0 1 0
## 106 9.371898 0 1 0
## 107 4.583450 0 1 0
## 108 5.086486 1 0 0
## 109 6.071908 0 1 0
## 110 20.046864 0 1 0
## 111 5.765368 0 1 0
## 112 16.929741 0 1 0
## 113 7.334061 1 0 0
## 114 8.648786 0 1 0
## 115 16.022273 0 1 0
## 116 13.506457 0 1 0
## 117 10.808718 0 1 0
## 118 5.652218 0 1 0
## 119 6.943665 0 1 0
## 120 2.948031 1 0 0
## 121 10.339500 0 1 0
## 122 3.676484 0 1 0
## 123 8.192794 0 1 0
## 124 7.957309 0 1 0
## 125 34.425706 0 0 1
## 126 9.243561 0 1 0
## 127 11.999276 0 1 0
## 128 10.198171 0 1 0
## 129 5.380517 0 1 0
## 130 7.876365 0 1 0
## 131 28.306891 0 0 1
## 132 14.127437 0 1 0
## 133 10.803489 0 1 0
## 134 6.173165 0 1 0
## 135 5.198511 1 0 0
## 136 22.197055 0 0 1
## 137 3.947298 1 0 0
## 138 18.861197 0 1 0
## 139 37.786003 0 0 1
## 140 4.546445 1 0 0
## 141 16.732842 0 1 0
## 142 7.779624 0 1 0
## 143 4.906995 1 0 0
## 144 4.862217 1 0 0
## 145 5.172499 1 0 0
## 146 5.851654 0 1 0
## 147 3.869247 1 0 0
## 148 18.120100 0 1 0
## 149 39.483617 0 0 1
## 150 4.976144 1 0 0
## 151 18.106538 0 1 0
## 152 16.968766 0 1 0
## 153 13.579758 0 1 0
## 154 5.156562 1 0 0
## 155 10.486969 0 1 0
## 156 8.110162 0 1 0
## 157 15.123242 0 1 0
## 158 7.714917 0 1 0
## 159 19.493626 0 1 0
## 160 6.588392 0 1 0
## 161 22.256569 0 0 1
## 162 4.575780 1 0 0
## 163 4.616771 1 0 0
## 164 67.326117 0 0 1
## 165 6.535937 0 1 0
## 166 10.633951 0 1 0
## 167 16.657055 0 1 0
## 168 7.593526 0 1 0
## 169 13.647619 0 1 0
## 170 14.842523 0 1 0
## 171 8.801277 0 1 0
## 172 11.876774 0 1 0
## 173 8.773773 0 1 0
## 174 40.785319 0 0 1
## 175 5.618035 0 1 0
## 176 5.604161 1 0 0
## 177 9.730732 0 1 0
## 178 12.762943 0 1 0
## 179 12.285187 0 1 0
## 180 6.185752 0 1 0
## 181 5.010412 1 0 0
## 182 24.186070 0 0 1
## 183 7.525994 0 1 0
## 184 4.855309 0 1 0
## 185 8.884178 0 1 0
## 186 9.707716 0 1 0
## 187 21.752630 0 0 1
## 188 10.392403 0 1 0
## 189 19.177983 0 1 0
## 190 4.554618 0 1 0
## 191 11.533685 0 1 0
## 192 9.783480 0 1 0
## 193 12.977096 0 1 0
## 194 5.398715 0 1 0
## 195 3.804581 1 0 0
## 196 38.109748 0 0 1
## 197 15.235449 0 1 0
## 198 6.139686 1 0 0
## 199 5.424761 0 1 0
## 200 5.105160 1 0 0
## 201 42.714634 0 0 1
## 202 24.909077 0 0 1
## 203 8.941270 0 1 0
## 204 14.482802 0 1 0
## 205 7.830553 0 1 0
## 206 7.967120 0 1 0
## 207 4.568418 0 1 0
## 208 7.411766 0 1 0
## 209 30.894213 0 0 1
## 210 9.870886 0 1 0
## 211 11.198458 0 1 0
## 212 11.700454 0 1 0
## 213 24.684900 0 0 1
## 214 5.440024 0 1 0
## 215 4.879017 0 1 0
## 216 32.655247 0 0 1
## 217 4.880445 0 1 0
## 218 4.296019 0 1 0
## 219 3.532991 1 0 0
## 220 3.084668 1 0 0
## 221 6.816132 0 1 0
## 222 15.096678 0 1 0
## 223 20.409527 0 0 1
## 224 16.525182 0 1 0
## 225 7.096846 0 1 0
## 226 11.345495 0 1 0
## 227 4.748845 0 1 0
## 228 6.966750 0 1 0
## 229 19.823386 0 1 0
## 230 5.331896 1 0 0
## 231 36.259350 0 0 1
## 232 11.255584 0 1 0
## 233 11.690121 0 1 0
## 234 3.903150 0 1 0
## 235 6.190801 0 1 0
## 236 2.733021 1 0 0
## 237 8.326472 0 1 0
## 238 13.456271 0 1 0
## 239 13.591784 0 1 0
## 240 6.589602 0 1 0
## 241 4.830693 0 1 0
## 242 7.545130 0 1 0
## 243 30.107401 0 0 1
## 244 3.997806 1 0 0
## 245 8.011361 0 1 0
## 246 36.726614 0 0 1
## 247 9.405837 0 1 0
## 248 5.217550 1 0 0
## 249 7.412284 0 1 0
## 250 14.977777 0 1 0
## 251 8.470111 0 1 0
## 252 7.075010 0 1 0
## 253 8.037120 0 1 0
## 254 11.134627 0 1 0
## 255 31.745084 0 0 1
## 256 8.312751 0 1 0
## 257 21.045596 0 0 1
## 258 16.831531 0 1 0
## 259 9.009933 0 1 0
## 260 4.860155 1 0 0
## 261 7.387029 0 1 0
## 262 7.554251 0 1 0
## 263 10.121236 0 1 0
## 264 25.160595 0 0 1
## 265 44.192864 0 0 1
## 266 30.628688 0 0 1
## 267 9.414000 0 1 0
## 268 6.636954 1 0 0
## 269 7.335574 0 1 0
## 270 11.863199 0 1 0
## 271 19.785247 0 1 0
## 272 21.091687 0 1 0
## 273 17.294014 0 1 0
## 274 4.398294 1 0 0
## 275 18.853787 0 1 0
## 276 7.255178 0 1 0
## 277 11.538978 0 1 0
## 278 11.556308 0 1 0
## 279 13.865997 0 1 0
## 280 10.128850 0 1 0
## 281 4.517300 1 0 0
## 282 17.380910 0 1 0
## 283 13.466496 0 1 0
## 284 5.772764 0 1 0
## 285 9.622199 0 1 0
## 286 11.053721 0 1 0
## 287 11.649421 0 1 0
## 288 30.003028 0 0 1
## 289 6.400008 0 1 0
## 290 11.074892 0 1 0
## 291 24.095929 0 0 1
## 292 23.540580 0 0 1
## 293 23.058531 0 0 1
## 294 7.873849 0 1 0
## 295 38.132695 0 0 1
## 296 10.662486 0 1 0
## 297 35.715048 0 0 1
## 298 3.797015 1 0 0
## 299 10.117471 0 1 0
## 300 25.594624 0 0 1
## 301 5.063051 0 1 0
## 302 5.356504 0 1 0
## 303 3.986484 0 1 0
## 304 5.257599 1 0 0
## 305 7.500849 0 1 0
## 306 13.626820 0 1 0
## 307 4.837638 1 0 0
## 308 11.937886 0 1 0
## 309 23.537438 0 0 1
## 310 38.755331 0 0 1
## 311 26.831209 0 0 1
## 312 17.268797 0 1 0
## 313 5.847634 1 0 0
## 314 5.523709 0 1 0
## 315 7.076910 0 1 0
## 316 17.551751 0 1 0
## 317 8.509016 0 1 0
## 318 2.980435 1 0 0
## 319 33.252625 0 0 1
## 320 20.143390 0 1 0
## 321 11.484922 0 1 0
## 322 22.202156 0 0 1
## 323 6.568965 1 0 0
## 324 19.986984 0 1 0
## 325 6.844493 0 1 0
## 326 17.722295 0 1 0
## 327 10.749083 0 1 0
## 328 15.563799 0 1 0
## 329 25.683767 0 0 1
## 330 8.331359 0 1 0
## 331 20.510168 0 0 1
## 332 5.352064 1 0 0
## 333 5.498587 0 1 0
## 334 28.863598 0 0 1
## 335 13.333809 0 1 0
## 336 4.353406 1 0 0
## 337 5.507125 1 0 0
## 338 7.071198 0 1 0
## 339 18.966387 0 1 0
## 340 8.777511 0 1 0
## 341 15.943736 0 1 0
## 342 21.891083 0 1 0
## 343 31.163651 0 0 1
## 344 9.674450 0 1 0
## 345 8.072597 0 1 0
## 346 4.389927 1 0 0
## 347 9.658034 0 1 0
## 348 6.814183 0 1 0
## 349 4.191003 0 1 0
## 350 8.961891 0 1 0
## 351 21.063447 0 0 1
## 352 4.537590 1 0 0
## 353 6.338861 0 1 0
## 354 11.859023 0 1 0
## 355 6.150875 0 1 0
## 356 15.011270 0 1 0
## 357 13.795683 0 1 0
## 358 8.243158 0 1 0
## 359 7.746359 1 0 0
## 360 50.817345 0 0 1
## 361 10.384186 0 1 0
## 362 16.591713 0 1 0
## 363 13.555363 0 1 0
## 364 22.115333 0 0 1
## 365 17.378885 0 1 0
## 366 8.282582 0 1 0
## 367 14.759636 0 1 0
## 368 5.994219 0 1 0
## 369 19.522131 0 1 0
## 370 7.426477 0 1 0
## 371 46.365162 0 0 1
## 372 3.650111 1 0 0
## 373 8.229380 0 1 0
## 374 17.226575 0 1 0
## 375 13.922870 0 1 0
## 376 6.955580 0 1 0
## 377 3.744275 0 1 0
## 378 10.666555 0 1 0
## 379 8.703355 0 1 0
## 380 5.913734 1 0 0
## 381 10.726303 0 1 0
## 382 12.052290 0 1 0
## 383 11.931864 0 1 0
## 384 5.456292 1 0 0
## 385 15.128531 0 1 0
## 386 24.761266 0 0 1
## 387 14.125530 0 1 0
## 388 4.896440 1 0 0
## 389 7.808873 0 1 0
## 390 11.940706 0 1 0
## 391 5.580039 0 1 0
## 392 5.631499 1 0 0
## 393 20.476945 0 1 0
## 394 6.707351 0 1 0
## 395 7.186109 0 1 0
## 396 27.593953 0 0 1
## 397 6.056694 0 1 0
## 398 20.062087 0 1 0
## 399 4.850442 1 0 0
## 400 6.974652 0 1 0
## 401 8.341665 0 1 0
## 402 4.082724 1 0 0
## 403 6.845578 0 1 0
## 404 9.340102 0 1 0
## 405 16.942682 0 1 0
## 406 6.263485 1 0 0
## 407 8.147285 0 1 0
## 408 19.132376 0 1 0
## 409 4.858893 0 1 0
## 410 11.692644 0 1 0
## 411 14.729763 0 1 0
## 412 12.936476 0 1 0
## 413 15.337092 0 1 0
## 414 9.869688 0 1 0
## 415 7.511363 0 1 0
## 416 10.077324 1 0 0
## 417 9.790871 0 1 0
## 418 13.881354 0 1 0
## 419 16.068693 0 1 0
## 420 7.131005 0 1 0
## 421 33.585706 0 0 1
## 422 13.577889 0 1 0
## 423 11.350953 0 1 0
## 424 25.702874 0 0 1
## 425 5.206674 0 1 0
## 426 8.586137 0 1 0
## 427 46.418966 0 0 1
## 428 10.937248 0 1 0
## 429 30.974068 0 0 1
## 430 4.420221 1 0 0
## 431 9.369194 0 1 0
## 432 11.872389 0 1 0
## 433 13.148744 0 1 0
## 434 5.382389 1 0 0
## 435 7.459858 0 1 0
## 436 5.231518 1 0 0
## 437 15.057047 0 1 0
## 438 22.868216 0 0 1
## 439 6.597895 1 0 0
## 440 23.771426 0 0 1
## 441 4.685372 1 0 0
## 442 15.631651 0 1 0
## 443 15.950313 0 1 0
## 444 9.078852 0 1 0
## 445 6.428762 0 1 0
## 446 10.225043 0 1 0
## 447 12.347213 0 1 0
## 448 17.414508 0 1 0
## 449 6.768840 1 0 0
## 450 4.907435 1 0 0
## 451 29.431943 0 0 1
## 452 22.233002 0 0 1
## 453 14.900437 0 1 0
## 454 18.590251 0 1 0
## 455 19.360310 0 1 0
## 456 10.464246 1 0 0
## 457 23.449156 0 0 1
## 458 8.195090 0 1 0
## 459 12.767138 0 1 0
## 460 8.321239 0 1 0
## 461 18.388464 0 1 0
## 462 8.306080 0 1 0
## 463 15.454834 0 1 0
## 464 7.966675 0 1 0
## 465 5.263899 1 0 0
## 466 23.870622 0 0 1
## 467 17.497133 0 1 0
## 468 33.400703 0 0 1
## 469 10.705598 0 1 0
## 470 21.966807 0 0 1
## 471 37.220035 0 0 1
## 472 6.666714 0 1 0
## 473 3.699958 1 0 0
## 474 8.112444 0 1 0
## 475 6.626978 0 1 0
## 476 9.593922 0 1 0
## 477 33.596970 0 0 1
## 478 7.133339 0 1 0
## 479 11.549743 0 1 0
## 480 8.221184 0 1 0
## 481 11.485930 0 1 0
## 482 13.470612 0 1 0
## 483 26.359564 0 0 1
## 484 12.198447 0 1 0
## 485 16.455670 0 1 0
## 486 18.780438 0 1 0
## 487 19.241531 0 1 0
## 488 6.395395 0 1 0
## 489 33.169742 0 0 1
## 490 8.357165 0 1 0
## 491 9.955305 0 1 0
## 492 26.038146 0 0 1
## 493 24.590395 0 0 1
## 494 7.128428 1 0 0
## 495 4.208890 0 1 0
## 496 4.882983 1 0 0
## 497 12.446554 0 1 0
## 498 12.419002 0 1 0
## 499 14.399768 0 1 0
## 500 15.168767 0 1 0
## 501 5.450696 0 1 0
## 502 4.705465 0 1 0
## 503 20.475045 0 0 1
## 504 18.327838 0 1 0
## 505 5.879774 1 0 0
## 506 11.393193 0 1 0
## 507 5.606699 0 1 0
## 508 5.423240 1 0 0
## 509 12.293044 0 1 0
## 510 10.289889 0 1 0
## 511 9.011239 0 1 0
## 512 10.311531 0 1 0
## 513 20.157266 0 1 0
## 514 12.900735 0 1 0
## 515 5.913385 0 1 0
## 516 6.277639 0 1 0
## 517 8.721803 0 1 0
## 518 13.450783 0 1 0
## 519 4.808072 1 0 0
## 520 8.282762 0 1 0
## 521 20.656576 0 1 0
## 522 8.885528 0 1 0
## 523 5.284992 0 1 0
## 524 7.704939 0 1 0
## 525 22.636360 0 0 1
## 526 15.515492 0 1 0
## 527 26.013931 0 0 1
## 528 9.812830 0 1 0
## 529 13.587559 0 1 0
## 530 7.099490 0 1 0
## 531 17.704407 0 1 0
## 532 7.144467 0 1 0
## 533 4.675742 1 0 0
## 534 10.765533 0 1 0
## 535 37.340129 0 0 1
## 536 19.320764 0 1 0
## 537 23.211615 0 0 1
## 538 13.420939 0 1 0
## 539 6.459504 0 1 0
## 540 9.234055 0 1 0
## 541 9.149389 0 1 0
## 542 7.188601 0 1 0
## 543 17.044722 0 1 0
## 544 6.116793 1 0 0
## 545 19.347234 0 1 0
## 546 20.731350 0 1 0
## 547 4.659185 1 0 0
## 548 16.956709 0 1 0
## 549 45.613729 0 0 1
## 550 6.361351 0 1 0
## 551 18.879029 0 1 0
## 552 4.819559 0 1 0
## 553 21.550838 0 0 1
## 554 13.133994 0 1 0
## 555 32.315955 0 0 1
## 556 3.415289 1 0 0
## 557 10.021890 0 1 0
## 558 5.505004 0 1 0
## 559 7.487548 0 1 0
## 560 6.677891 0 1 0
## 561 4.729113 0 1 0
## 562 16.628018 0 1 0
## 563 4.886373 1 0 0
## 564 29.015440 0 0 1
## 565 4.207979 1 0 0
## 566 9.688063 0 1 0
## 567 16.030899 0 1 0
## 568 15.964729 0 1 0
## 569 7.620112 0 1 0
## 570 10.724213 0 1 0
## 571 21.788108 0 1 0
## 572 4.013985 1 0 0
## 573 4.830025 0 1 0
## 574 12.251576 0 1 0
## 575 5.450246 0 1 0
## 576 27.410393 0 0 1
## 577 16.938213 0 1 0
## 578 10.800130 0 1 0
## 579 4.714590 1 0 0
## 580 9.700685 0 1 0
## 581 6.945611 0 1 0
## 582 10.064509 0 1 0
## 583 3.309588 1 0 0
## 584 15.175543 0 1 0
## 585 4.134028 1 0 0
## 586 8.626064 0 1 0
## 587 12.747173 0 1 0
## 588 5.050223 0 1 0
## 589 17.452934 0 1 0
## 590 5.335798 1 0 0
## 591 9.061407 1 0 0
## 592 14.494742 0 1 0
## 593 18.392027 0 1 0
## 594 6.821733 0 1 0
## 595 15.005226 0 1 0
## 596 4.891062 1 0 0
## 597 8.702805 0 1 0
## 598 7.749037 1 0 0
## 599 21.386322 0 0 1
## 600 36.095312 0 0 1
## 601 21.763582 0 0 1
## 602 10.439981 0 1 0
## 603 9.282692 0 1 0
## 604 4.172978 1 0 0
## 605 16.486830 0 1 0
## 606 8.237905 0 1 0
## 607 8.518736 0 1 0
## 608 5.674946 1 0 0
## 609 9.547045 0 1 0
## 610 6.285191 0 1 0
## 611 8.440918 0 1 0
## 612 5.609726 1 0 0
## 613 32.519983 0 0 1
## 614 9.290219 0 1 0
## 615 21.533147 0 0 1
## 616 7.892086 1 0 0
## 617 6.984764 0 1 0
## 618 6.864326 0 1 0
## 619 5.735158 1 0 0
## 620 29.644006 0 0 1
## 621 4.139186 1 0 0
## 622 16.141757 0 1 0
## 623 19.657539 0 1 0
## 624 12.941352 0 1 0
## 625 4.958492 0 1 0
## 626 20.148748 0 1 0
## 627 11.900613 0 1 0
## 628 6.561622 1 0 0
## 629 4.364174 1 0 0
## 630 40.610524 0 0 1
## 631 3.858260 0 1 0
## 632 4.977611 1 0 0
## 633 13.827162 0 1 0
## 634 13.883933 0 1 0
## 635 4.503474 1 0 0
## 636 5.391213 1 0 0
## 637 10.479259 0 1 0
## 638 24.126115 0 0 1
## 639 15.404932 0 1 0
## 640 7.213329 0 1 0
## 641 4.185660 0 1 0
## 642 11.913351 0 1 0
## 643 12.949685 0 1 0
## 644 17.677433 0 1 0
## 645 8.412603 0 1 0
## 646 19.050442 0 1 0
## 647 3.542820 0 1 0
## 648 6.507724 0 1 0
## 649 18.525491 0 1 0
## 650 20.569336 0 1 0
## 651 3.602756 1 0 0
## 652 10.711805 0 1 0
## 653 17.392307 0 1 0
## 654 5.351548 1 0 0
## 655 13.716749 0 1 0
## 656 3.886307 0 1 0
## 657 20.458225 0 0 1
## 658 15.212273 0 1 0
## 659 18.814816 0 1 0
## 660 9.069534 0 1 0
## 661 20.170055 0 1 0
## 662 26.767035 0 0 1
## 663 37.898157 0 0 1
## 664 8.122003 0 1 0
## 665 6.515629 1 0 0
## 666 9.806956 0 1 0
## 667 12.815147 0 1 0
## 668 9.857808 0 1 0
## 669 15.950255 0 1 0
## 670 22.754046 0 0 1
## 671 6.145647 0 1 0
## 672 8.919251 0 1 0
## 673 13.621633 0 1 0
## 674 5.839106 0 1 0
## 675 11.678508 0 1 0
## 676 7.232330 1 0 0
## 677 5.681579 1 0 0
## 678 4.157357 1 0 0
## 679 4.887243 0 1 0
## 680 7.273253 0 1 0
## 681 13.849739 0 1 0
## 682 21.580116 0 1 0
## 683 5.429490 0 1 0
## 684 6.267387 0 1 0
## 685 4.113081 1 0 0
## 686 7.824293 0 1 0
## 687 7.441997 0 1 0
## 688 12.108023 0 1 0
## 689 6.396193 0 1 0
## 690 6.468734 1 0 0
## 691 10.176529 0 1 0
## 692 21.974430 0 0 1
## 693 22.541126 0 0 1
## 694 7.320229 0 1 0
## 695 4.370725 1 0 0
## 696 48.296368 0 0 1
## 697 8.252832 0 1 0
## 698 8.950297 0 1 0
## 699 13.982486 0 1 0
## 700 4.914016 1 0 0
## 701 5.572596 0 1 0
## 702 4.325553 1 0 0
## 703 2.848523 0 1 0
## 704 12.861827 0 1 0
## 705 6.460044 1 0 0
## 706 14.663018 0 1 0
## 707 12.397805 0 1 0
## 708 6.594370 0 1 0
## 709 12.962559 0 1 0
## 710 18.940127 0 1 0
## 711 20.794785 0 0 1
## 712 11.010395 0 1 0
## 713 8.143749 0 1 0
## 714 10.082761 0 1 0
## 715 27.906406 0 0 1
## 716 22.394225 0 0 1
## 717 18.384475 0 1 0
## 718 6.957571 0 1 0
## 719 15.026519 0 1 0
## 720 13.803765 0 1 0
## 721 5.181081 1 0 0
## 722 5.344306 1 0 0
## 723 15.995307 0 1 0
## 724 3.647867 1 0 0
## 725 10.267204 0 1 0
## 726 10.096215 0 1 0
## 727 14.046211 0 1 0
## 728 10.546660 0 1 0
## 729 4.669715 0 1 0
## 730 20.916869 0 1 0
## 731 34.576100 0 0 1
## 732 17.863535 0 1 0
## 733 6.217805 1 0 0
## 734 27.972595 0 0 1
## 735 8.571447 0 1 0
## 736 14.973120 0 1 0
## 737 16.960653 0 1 0
## 738 8.999047 0 1 0
## 739 9.194204 0 1 0
## 740 21.577027 0 0 1
## 741 17.151934 0 1 0
## 742 20.308303 0 1 0
## 743 45.959817 0 0 1
## 744 18.522512 0 1 0
## 745 12.661739 0 1 0
## 746 6.061034 1 0 0
## 747 52.024767 0 0 1
## 748 6.477534 0 1 0
## 749 47.244747 0 0 1
## 750 13.710901 0 1 0
## 751 28.706239 0 0 1
## 752 10.040661 0 1 0
## 753 14.743203 0 1 0
## 754 10.728319 0 1 0
## 755 9.076150 0 1 0
## 756 10.604476 0 1 0
## 757 21.614643 0 0 1
## 758 8.702091 0 1 0
## 759 5.498747 1 0 0
## 760 9.116402 0 1 0
## 761 14.121876 0 1 0
## 762 14.418550 0 1 0
## 763 16.029657 0 1 0
## 764 5.018217 1 0 0
## 765 15.722904 0 1 0
## 766 19.336781 0 1 0
## 767 25.272495 0 0 1
## 768 9.157186 0 1 0
## 769 8.786297 0 1 0
## 770 28.532962 0 0 1
## 771 4.259271 1 0 0
## 772 7.012037 0 1 0
## 773 16.227267 0 1 0
## 774 5.392125 1 0 0
## 775 10.427121 0 1 0
## 776 37.025491 0 0 1
## 777 10.508067 0 1 0
## 778 7.971406 0 1 0
## 779 14.458053 0 1 0
## 780 7.851277 0 1 0
## 781 18.748623 0 1 0
## 782 19.185627 0 1 0
## 783 10.298566 0 1 0
## 784 3.808920 1 0 0
## 785 4.867499 1 0 0
## 786 7.417796 0 1 0
## 787 18.795697 0 1 0
## 788 6.871811 1 0 0
## 789 4.493198 1 0 0
## 790 6.106838 0 1 0
## 791 14.239051 0 1 0
## 792 4.127276 0 1 0
## 793 21.018778 0 1 0
## 794 11.965558 0 1 0
## 795 8.886755 0 1 0
## 796 18.713896 0 1 0
## 797 13.681074 0 1 0
## 798 6.818669 0 1 0
## 799 12.459099 0 1 0
## 800 15.406763 0 1 0
## 801 11.941716 0 1 0
## 802 5.380282 0 1 0
## 803 18.978406 0 1 0
## 804 24.468023 0 0 1
## 805 14.026633 0 1 0
## 806 11.534617 0 1 0
## 807 9.793748 0 1 0
## 808 41.062837 0 0 1
## 809 12.487628 0 1 0
## 810 7.404273 0 1 0
## 811 9.095546 1 0 0
## 812 4.292513 1 0 0
## 813 9.731393 0 1 0
## 814 11.432043 0 1 0
## 815 11.783339 0 1 0
## 816 18.377563 0 1 0
## 817 8.192961 0 1 0
## 818 25.236966 0 0 1
## 819 5.384655 0 1 0
## 820 5.145951 1 0 0
## 821 3.458478 1 0 0
## 822 19.088213 0 1 0
## 823 9.516638 0 1 0
## 824 17.333699 0 1 0
## 825 8.382395 0 1 0
## 826 7.186306 0 1 0
## 827 6.076553 0 1 0
## 828 7.165740 1 0 0
## 829 4.589047 1 0 0
## 830 5.823285 1 0 0
## 831 21.841626 0 0 1
## 832 5.959346 0 1 0
## 833 16.350499 0 1 0
## 834 27.930984 0 0 1
## 835 8.534794 0 1 0
## 836 13.340645 0 1 0
## 837 3.308494 1 0 0
## 838 6.836744 0 1 0
## 839 11.858190 0 1 0
## 840 11.517738 0 1 0
## 841 6.127172 0 1 0
## 842 52.070636 0 0 1
## 843 6.838043 0 1 0
## 844 11.454993 0 1 0
## 845 17.333363 0 1 0
## 846 8.944707 0 1 0
## 847 5.707361 0 1 0
## 848 20.664274 0 0 1
## 849 31.093866 0 0 1
## 850 8.206018 0 1 0
## 851 12.817247 0 1 0
## 852 10.718980 0 1 0
## 853 23.504658 0 0 1
## 854 4.305796 1 0 0
## 855 45.487161 0 0 1
## 856 6.256997 0 1 0
## 857 6.188243 1 0 0
## 858 8.116231 0 1 0
## 859 11.441902 0 1 0
## 860 29.098271 0 0 1
## 861 20.863542 0 1 0
## 862 10.849697 0 1 0
## 863 3.272635 1 0 0
## 864 5.119966 0 1 0
## 865 8.646928 0 1 0
## 866 51.037243 0 0 1
## 867 4.332123 1 0 0
## 868 22.328647 0 0 1
## 869 8.104174 0 1 0
## 870 33.013170 0 0 1
## 871 5.942944 1 0 0
## 872 12.872393 0 1 0
## 873 5.034660 1 0 0
## 874 19.095274 0 1 0
## 875 29.030245 0 0 1
## 876 38.080429 0 0 1
## 877 20.702939 0 1 0
## 878 32.974039 0 0 1
## 879 24.905345 0 0 1
## 880 9.651968 0 1 0
## 881 14.444393 0 1 0
## 882 3.500542 0 1 0
## 883 9.362783 0 1 0
## 884 23.460881 0 0 1
## 885 15.715100 0 1 0
## 886 15.193938 0 1 0
## 887 6.212057 1 0 0
## 888 4.702339 0 1 0
## 889 6.718761 0 1 0
## 890 12.874162 0 1 0
## 891 3.730236 0 1 0
## 892 16.758323 0 1 0
## 893 5.954085 1 0 0
## 894 34.416231 0 0 1
## 895 15.080705 0 1 0
## 896 5.005864 0 1 0
## 897 11.951645 0 1 0
## 898 7.459321 0 1 0
## 899 13.101696 0 1 0
## 900 12.860285 0 1 0
## 901 6.509697 1 0 0
## 902 5.092251 0 1 0
## 903 12.633360 0 1 0
## 904 32.808646 0 0 1
## 905 21.877076 0 0 1
## 906 3.569676 0 1 0
## 907 19.167813 0 1 0
## 908 8.732062 0 1 0
## 909 11.684341 0 1 0
## 910 13.707073 0 1 0
## 911 52.950421 0 0 1
## 912 3.692636 1 0 0
## 913 11.868939 0 1 0
## 914 5.170991 1 0 0
## 915 15.904214 0 1 0
## 916 23.602755 0 0 1
## 917 28.048790 0 0 1
## 918 4.866025 1 0 0
## 919 13.342883 0 1 0
## 920 31.049578 0 0 1
## 921 4.866153 0 1 0
## 922 9.533064 0 1 0
## 923 8.144557 0 1 0
## 924 13.341797 0 1 0
## 925 16.458233 0 1 0
## 926 27.045592 0 0 1
## 927 9.452302 0 1 0
## 928 11.787739 0 1 0
## 929 49.172519 0 0 1
## 930 13.179316 0 1 0
## 931 11.421009 0 1 0
## 932 5.844489 1 0 0
## 933 10.706346 0 1 0
## 934 7.100850 0 1 0
## 935 10.549956 0 1 0
## 936 5.012386 0 1 0
## 937 5.322311 0 1 0
## 938 7.003275 0 1 0
## 939 6.170955 0 1 0
## 940 24.781408 0 0 1
## 941 22.995814 0 0 1
## 942 6.694153 0 1 0
## 943 6.283318 1 0 0
## 944 5.215046 0 1 0
## 945 7.394326 0 1 0
## 946 11.674605 0 1 0
## 947 5.365075 0 1 0
## 948 37.829157 0 0 1
## 949 7.629151 0 1 0
## 950 7.525512 1 0 0
## 951 9.055918 0 1 0
## 952 5.462132 1 0 0
## 953 10.981646 0 1 0
## 954 11.791032 0 1 0
## 955 14.602783 0 1 0
## 956 4.577523 1 0 0
## 957 11.931967 0 1 0
## 958 13.149701 0 1 0
## 959 4.258056 1 0 0
## 960 22.340160 0 1 0
## 961 16.689679 0 1 0
## 962 46.272995 0 0 1
## 963 10.975699 0 1 0
## 964 11.737540 0 1 0
## 965 8.801496 0 1 0
## 966 11.528812 0 1 0
## 967 6.339204 1 0 0
## 968 3.737763 1 0 0
## 969 8.629401 0 1 0
## 970 6.557904 0 1 0
## 971 11.590716 0 1 0
## 972 5.715936 1 0 0
## 973 4.524577 1 0 0
## 974 6.399277 1 0 0
## 975 19.678051 0 1 0
## 976 5.779915 1 0 0
## 977 5.970324 0 1 0
## 978 9.552316 0 1 0
## 979 7.062657 0 1 0
## 980 12.018929 0 1 0
## 981 44.629388 0 0 1
## 982 6.222469 1 0 0
## 983 7.234394 0 1 0
## 984 4.952558 0 1 0
## 985 30.009010 0 0 1
## 986 5.011820 0 1 0
## 987 9.483860 0 1 0
## 988 19.874849 0 1 0
## 989 4.642703 1 0 0
## 990 33.009783 0 0 1
## 991 15.678924 0 1 0
## 992 5.793618 1 0 0
## 993 14.503345 0 1 0
## 994 7.693271 0 1 0
## 995 11.520158 0 1 0
## 996 9.381129 0 1 0
## 997 22.257307 0 0 1
## 998 4.945060 1 0 0
## 999 7.175307 0 1 0
## 1000 7.732277 0 1 0
step.mod <- lm(y~c1+c2+c3)
plot(data.x,y,xlim=c(-2,5), ylim=c(-10,70))
lines(data.x,lin.mod$fitted.values,col="red")
lines(data.x[ix], step.mod$fitted.values[ix],col="green")summary(step.mod)##
## Call:
## lm(formula = y ~ c1 + c2 + c3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.395 -3.534 -0.530 2.527 36.876
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 30.4499 0.4087 74.50 <2e-16 ***
## c11 -25.2395 0.5710 -44.21 <2e-16 ***
## c21 -19.4184 0.4536 -42.81 <2e-16 ***
## c31 NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.121 on 997 degrees of freedom
## Multiple R-squared: 0.698, Adjusted R-squared: 0.6974
## F-statistic: 1152 on 2 and 997 DF, p-value: < 2.2e-16
#Komparasi Model
nilai_AIC <- rbind(AIC(lin.mod),
AIC(pol.mod),
AIC(step.mod))
nama_model <- c("Linear","Poly (ordo=2)","Tangga (breaks=3)")
data.frame(nama_model,nilai_AIC) #AIS, MRSE, MSE terkecil yang terbaik## nama_model nilai_AIC
## 1 Linear 5711.836
## 2 Poly (ordo=2) 2856.470
## 3 Tangga (breaks=3) 6109.609
MSE=function(pred,actual){
mean((pred-actual)^2)
}MSE(predict(lin.mod), y)## [1] 17.60106
MSE(predict(pol.mod), y)## [1] 1.010649
MSE(predict(step.mod), y)## [1] 26.14693
#Contoh data TRICEPS Data yang digunakan untuk ilustrasi berasal dari studi antropometri terhadap 892 perempuan di bawah 50 tahun di tiga desa Gambia di Afrika Barat. Data terdiri dari 3 Kolom yaitu Age, Intriceps dan tricepts. Berikut adalah penjelasannya pada masing-masing kolom:
age : umur responden(x) Intriceps : logaritma dari ketebalan lipatan kulit triceps triceps: ketebalan lipatan kulit triceps (y) Lipatan kulit trisep diperlukan untuk menghitung lingkar otot lengan atas. Ketebalannya memberikan informasi tentang cadangan lemak tubuh, sedangkan massa otot yang dihitung memberikan informasi tentang cadangan protein
data("triceps", package="MultiKink")Jika kita gambarkan dalam bentuk scatterplot
ggplot(triceps,aes(x=age, y=triceps)) +
geom_point(alpha=0.55, color="black") +
theme_bw()
Berdasarkan pola hubungan yang terlihat pada scatterplot, kita akan
mencoba untuk mencari model yang bisa merepresentasikan pola hubungan
tersebut dengan baik.
#Regresi Linear
mod_linear = lm(triceps~age,data=triceps)
summary(mod_linear)##
## Call:
## lm(formula = triceps ~ age, data = triceps)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.9512 -2.3965 -0.5154 1.5822 25.1233
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.19717 0.21244 29.17 <2e-16 ***
## age 0.21584 0.01014 21.28 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.007 on 890 degrees of freedom
## Multiple R-squared: 0.3372, Adjusted R-squared: 0.3365
## F-statistic: 452.8 on 1 and 890 DF, p-value: < 2.2e-16
ringkasan_liniar <- summary(mod_linear)
ringkasan_liniar$r.squared## [1] 0.3372092
AIC(mod_linear)## [1] 5011.515
predict(mod_linear) #y duga## 1 2 3 4 5 6 7 8
## 8.798074 8.336171 8.364231 8.677202 8.381498 8.759222 8.552014 8.362072
## 9 10 11 12 13 14 15 16
## 8.575756 8.355597 8.649143 8.653460 8.573598 8.353439 8.346963 8.772173
## 17 18 19 20 21 22 23 24
## 8.627558 8.372864 8.353439 8.806708 8.441934 8.355597 8.573598 8.754906
## 25 26 27 28 29 30 31 32
## 8.580073 8.441934 8.657776 8.716054 8.703103 8.364231 8.340488 8.495894
## 33 34 35 36 37 38 39 40
## 8.817500 8.465677 8.478627 8.463518 8.830450 8.782965 8.493736 8.700945
## 41 42 43 44 45 46 47 48
## 8.422508 8.485103 8.638351 8.435459 8.703103 8.653460 8.450568 8.614608
## 49 50 51 52 53 54 55 56
## 8.785123 8.666410 8.383657 8.459201 8.666410 8.657776 8.670727 8.763539
## 57 58 59 60 61 62 63 64
## 8.644826 8.830450 8.495894 8.463518 8.467835 8.651301 8.605974 8.782965
## 65 66 67 68 69 70 71 72
## 8.599499 8.504528 8.461360 8.731163 8.815341 8.413875 8.316745 8.787282
## 73 74 75 76 77 78 79 80
## 8.651301 8.683678 8.789440 8.336171 8.754906 8.828292 8.834767 8.694469
## 81 82 83 84 85 86 87 88
## 8.623242 8.642667 8.547697 8.474310 8.452726 8.631875 14.077578 6.840384
## 89 90 91 92 93 94 95 96
## 13.043693 7.116662 11.457252 10.406100 14.986275 10.026217 10.065069 10.097445
## 97 98 99 100 101 102 103 104
## 9.352789 7.876427 10.108237 7.382148 11.560856 11.850085 11.191766 15.633802
## 105 106 107 108 109 110 111 112
## 7.766347 10.123346 7.013057 10.932755 12.139314 6.682819 6.531729 9.149897
## 113 114 115 116 117 118 119 120
## 7.133929 14.915047 7.371356 7.248326 8.959956 12.860228 14.120747 8.182923
## 121 122 123 124 125 126 127 128
## 6.421649 6.892186 7.403732 12.048660 7.054067 11.297528 8.867143 8.131121
## 129 130 131 132 133 134 135 136
## 10.414734 17.151174 7.677852 10.552872 8.107378 9.106728 13.037218 10.395308
## 137 138 139 140 141 142 143 144
## 10.473011 6.501511 11.161548 11.068736 6.570581 8.012408 12.609850 13.943756
## 145 146 147 148 149 150 151 152
## 6.365530 6.365530 6.510145 7.669218 11.146439 7.496544 7.129612 8.267102
## 153 154 155 156 157 158 159 160
## 6.678502 10.453585 10.978082 6.454026 11.105429 12.579632 7.844051 7.310920
## 161 162 163 164 165 166 167 168
## 9.283719 13.691221 7.295811 9.303145 7.073493 9.307462 9.244868 6.777789
## 169 170 171 172 173 174 175 176
## 7.969239 17.367016 14.122906 8.992332 7.082127 7.338979 9.020392 7.798724
## 177 178 179 180 181 182 183 184
## 6.833908 9.326888 8.858510 7.721020 13.995559 17.367016 12.109096 7.772823
## 185 186 187 188 189 190 191 192
## 13.693379 14.241619 9.020392 9.119679 9.132630 9.430492 6.404382 13.330764
## 193 194 195 196 197 198 199 200
## 9.093778 6.941829 9.074352 8.148388 8.938371 8.269260 9.708929 9.197382
## 201 202 203 204 205 206 207 208
## 7.302286 6.954780 9.255660 8.247676 6.546838 12.773890 7.686486 6.831750
## 209 210 211 212 213 214 215 216
## 7.246167 9.272927 6.963414 6.516620 9.698136 6.590006 9.756414 9.596691
## 217 218 219 220 221 222 223 224
## 9.683028 13.546606 6.980681 9.706770 15.849645 14.409976 9.639859 12.270978
## 225 226 227 228 229 230 231 232
## 14.772591 8.118170 7.453376 6.339629 7.347613 9.836276 7.733971 13.848786
## 233 234 235 236 237 238 239 240
## 6.715195 9.434809 9.432650 12.914188 6.766997 15.849645 6.421649 14.483362
## 241 242 243 244 245 246 247 248
## 8.157022 6.497194 15.849645 10.278753 9.654968 13.652369 11.539272 10.600358
## 249 250 251 252 253 254 255 256
## 11.776699 8.085794 10.090970 9.542730 7.936863 7.278544 9.572948 9.156372
## 257 258 259 260 261 262 263 264
## 9.566473 8.970748 6.466976 11.373073 14.552432 7.995140 7.060543 7.528921
## 265 266 267 268 269 270 271 272
## 9.182273 6.309411 10.026217 10.729863 10.276594 7.166305 13.853103 9.037659
## 273 274 275 276 277 278 279 280
## 7.205157 9.777998 12.074561 7.867793 12.473870 14.768274 14.125064 10.738497
## 281 282 283 284 285 286 287 288
## 8.893044 14.770433 14.768274 14.768274 9.691661 10.280911 12.184641 13.907063
## 289 290 291 292 293 294 295 296
## 6.387115 9.223283 13.963182 8.888728 12.398325 9.711087 13.395516 7.114503
## 297 298 299 300 301 302 303 304
## 13.786191 14.392709 7.300128 15.202118 7.207316 14.321480 15.417960 9.175798
## 305 306 307 308 309 310 311 312
## 7.153355 9.639859 6.797215 9.182273 15.847486 8.912470 11.081686 6.943988
## 313 314 315 316 317 318 319 320
## 7.205157 15.199959 16.065487 16.274854 6.413016 16.495013 15.851803 15.849645
## 321 322 323 324 325 326 327 328
## 6.855492 12.180324 6.859809 6.803690 7.518129 14.701363 9.171481 6.883552
## 329 330 331 332 333 334 335 336
## 12.031393 6.341788 9.708929 10.529130 7.151197 9.965781 16.935332 16.931015
## 337 338 339 340 341 342 343 344
## 16.926698 15.204276 14.511422 6.572739 13.958865 7.129612 6.486402 9.331205
## 345 346 347 348 349 350 351 352
## 8.191557 6.438917 7.218108 7.390782 12.402642 7.712387 7.824625 7.077810
## 353 354 355 356 357 358 359 360
## 6.898661 15.847486 15.847486 7.518129 9.346314 9.799583 12.180324 8.923263
## 361 362 363 364 365 366 367 368
## 15.417960 16.497172 10.900379 8.286528 9.393799 10.166514 6.479927 9.136946
## 369 370 371 372 373 374 375 376
## 11.204717 6.788581 13.697696 13.475379 11.955848 16.065487 17.142540 9.534096
## 377 378 379 380 381 382 383 384
## 13.978291 11.964481 13.598409 12.173849 6.760522 6.823116 6.883552 6.270560
## 385 386 387 388 389 390 391 392
## 7.187890 7.321712 14.552432 15.208593 13.296229 12.098304 12.070244 7.503020
## 393 394 395 396 397 398 399 400
## 6.462659 9.911820 6.633175 9.510354 9.415383 7.295811 6.691452 11.355806
## 401 402 403 404 405 406 407 408
## 8.157022 6.831750 15.417960 6.704403 7.138246 6.413016 14.856769 10.460060
## 409 410 411 412 413 414 415 416
## 6.721670 7.807357 11.770223 12.262344 9.713246 11.563015 11.595391 11.647193
## 417 418 419 420 421 422 423 424
## 8.264943 9.244868 9.838434 9.335521 7.556980 13.261694 13.261694 7.779298
## 425 426 427 428 429 430 431 432
## 7.921754 6.372006 9.283719 7.015216 6.417332 6.725987 8.163497 7.090761
## 433 434 435 436 437 438 439 440
## 9.262135 9.631225 8.847718 7.921754 6.902978 13.661003 14.125064 10.993191
## 441 442 443 444 445 446 447 448
## 13.477537 7.608782 13.557398 7.153355 6.555472 13.477537 6.946146 7.418841
## 449 450 451 452 453 454 455 456
## 7.684327 13.473220 7.932546 9.713246 13.261694 10.665111 12.219176 8.146230
## 457 458 459 460 461 462 463 464
## 7.092919 8.297319 7.675694 6.741096 9.430492 8.023200 13.693379 6.626700
## 465 466 467 468 469 470 471 472
## 12.232126 6.477768 12.542939 13.475379 11.431351 12.396166 14.086212 6.857651
## 473 474 475 476 477 478 479 480
## 9.883761 16.719489 8.893044 6.926720 7.997299 6.717353 7.572089 7.779298
## 481 482 483 484 485 486 487 488
## 9.549205 9.115362 9.976573 7.000107 12.314146 6.972047 6.993632 6.393590
## 489 490 491 492 493 494 495 496
## 14.768274 9.035500 7.233217 13.641577 7.060543 14.804968 16.928857 7.440425
## 497 498 499 500 501 502 503 504
## 11.398975 8.100903 7.852684 10.902537 8.133279 6.499353 12.044343 8.299478
## 505 506 507 508 509 510 511 512
## 6.648284 15.847486 10.801091 6.758363 7.334663 7.513812 11.966640 6.454026
## 513 514 515 516 517 518 519 520
## 6.400065 12.609850 10.039167 6.931037 7.967081 6.410857 11.893253 9.581582
## 521 522 523 524 525 526 527 528
## 8.154864 15.631643 13.924330 10.293861 6.922404 6.525254 9.044134 13.477537
## 529 530 531 532 533 534 535 536
## 7.272068 15.849645 7.341138 12.178165 16.067645 11.496103 12.594741 6.833908
## 537 538 539 540 541 542 543 544
## 6.898661 15.199959 6.479927 14.984116 7.397257 7.395098 13.259536 8.910312
## 545 546 547 548 549 550 551 552
## 7.032483 10.062910 7.423158 11.720580 16.065487 12.583949 12.374582 6.516620
## 553 554 555 556 557 558 559 560
## 9.398116 14.986275 10.065069 7.334663 11.003983 11.601867 15.202118 10.496753
## 561 562 563 564 565 566 567 568
## 6.890027 8.979382 7.136088 9.145580 7.287177 10.688853 7.882902 8.215300
## 569 570 571 572 573 574 575 576
## 11.476678 7.198682 15.417960 6.786423 6.404382 6.989315 10.116871 10.179465
## 577 578 579 580 581 582 583 584
## 8.003774 14.986275 6.443234 7.071335 14.986275 11.155073 6.853334 10.291703
## 585 586 587 588 589 590 591 592
## 6.419491 6.417332 8.087953 6.432441 6.384956 15.415801 6.313728 14.094846
## 593 594 595 596 597 598 599 600
## 14.584808 6.570581 6.512303 9.970098 9.037659 7.710228 6.441075 12.247235
## 601 602 603 604 605 606 607 608
## 7.552663 10.062910 7.589357 7.630367 7.157672 7.004424 6.445392 11.964481
## 609 610 611 612 613 614 615 616
## 6.372006 14.213559 8.046942 6.982840 6.333154 7.639000 9.903187 10.375882
## 617 618 619 620 621 622 623 624
## 6.415174 6.413016 6.410857 16.067645 9.417542 16.713014 7.343296 8.210983
## 625 626 627 628 629 630 631 632
## 9.983049 12.024917 7.941180 7.615258 9.262135 10.714754 7.533238 6.754047
## 633 634 635 636 637 638 639 640
## 6.374164 7.274227 8.994490 13.015634 9.139105 11.664461 9.616117 12.603375
## 641 642 643 644 645 646 647 648
## 6.721670 12.055135 6.808007 9.141263 7.520287 6.766997 6.529570 7.585040
## 649 650 651 652 653 654 655 656
## 6.775631 6.782106 7.345455 7.764189 6.792898 7.794407 11.273786 6.525254
## 657 658 659 660 661 662 663 664
## 6.553313 15.204276 6.546838 7.187890 6.566264 11.405450 8.139755 7.507337
## 665 666 667 668 669 670 671 672
## 16.065487 7.960605 8.232567 6.529570 12.719930 7.326029 9.829800 9.311779
## 673 674 675 676 677 678 679 680
## 9.898870 10.447110 15.130889 6.732462 10.021900 11.970957 9.413225 11.299687
## 681 682 683 684 685 686 687 688
## 8.234725 7.185731 10.887428 9.719721 6.905136 9.115362 8.929738 7.537554
## 689 690 691 692 693 694 695 696
## 7.228900 13.332923 14.125064 14.554590 11.103270 9.199541 9.350630 6.326679
## 697 698 699 700 701 702 703 704
## 7.546188 13.725756 11.206875 10.701804 7.658426 7.865635 7.187890 9.754256
## 705 706 707 708 709 710 711 712
## 7.526762 6.348263 17.360541 12.186799 8.940530 10.280911 13.475379 7.382148
## 713 714 715 716 717 718 719 720
## 15.847486 6.810166 9.093778 8.159180 7.064860 10.436317 11.813392 9.184432
## 721 722 723 724 725 726 727 728
## 8.174289 7.444742 11.401133 7.477119 13.693379 15.417960 7.496544 13.907063
## 729 730 731 732 733 734 735 736
## 7.142563 8.888728 14.455302 7.392940 9.935563 8.299478 7.768506 14.915047
## 737 738 739 740 741 742 743 744
## 6.676343 14.986275 10.507545 7.923912 16.281329 8.103061 14.543798 14.472570
## 745 746 747 748 749 750 751 752
## 7.522445 6.611591 8.871460 6.527412 8.992332 16.065487 7.332504 15.204276
## 753 754 755 756 757 758 759 760
## 9.816850 13.924330 7.202999 6.333154 12.825692 13.689062 7.466326 7.669218
## 761 762 763 764 765 766 767 768
## 7.067018 14.770433 7.330346 6.669868 7.423158 6.590006 11.314796 8.113854
## 769 770 771 772 773 774 775 776
## 11.066577 12.063769 15.202118 10.673744 16.706538 8.005932 9.801741 8.882252
## 777 778 779 780 781 782 783 784
## 7.224583 16.713014 7.835417 9.864335 6.641809 14.768274 12.137156 14.697046
## 785 786 787 788 789 790 791 792
## 6.993632 7.967081 7.155513 9.937722 7.524604 9.348472 11.621292 7.518129
## 793 794 795 796 797 798 799 800
## 6.922404 8.157022 10.496753 14.554590 6.507986 7.582881 7.561297 17.144699
## 801 802 803 804 805 806 807 808
## 8.295161 11.925630 9.497403 12.035709 11.491787 9.419700 11.707629 6.434600
## 809 810 811 812 813 814 815 816
## 10.401783 7.701595 9.855702 9.424017 7.362722 7.308762 7.483594 10.239901
## 817 818 819 820 821 822 823 824
## 7.030325 6.486402 13.259536 11.010458 10.578773 7.425316 7.464168 13.697696
## 825 826 827 828 829 830 831 832
## 7.440425 7.088602 9.989524 15.849645 9.387324 11.170182 6.853334 8.979382
## 833 834 835 836 837 838 839 840
## 7.505178 6.533887 12.454444 14.986275 12.050819 12.374582 6.372006 15.202118
## 841 842 843 844 845 846 847 848
## 13.186150 17.360541 14.498471 9.048451 9.721879 7.328187 7.541871 7.967081
## 849 850 851 852 853 854 855 856
## 9.527621 12.394008 6.680660 9.264293 10.934914 9.212491 7.787932 9.521146
## 857 858 859 860 861 862 863 864
## 8.152705 6.253292 8.072843 11.532797 9.657127 6.898661 11.316954 9.370056
## 865 866 867 868 869 870 871 872
## 14.261045 14.986275 7.852684 6.510145 6.393590 13.963182 6.449709 7.846209
## 873 874 875 876 877 878 879 880
## 8.947005 12.635751 15.199959 7.995140 7.459851 7.077810 8.273577 7.421000
## 881 882 883 884 885 886 887 888
## 7.764189 7.906645 6.516620 10.147089 6.905136 8.981540 15.204276 12.057294
## 889 890 891 892
## 7.904486 7.921754 9.354947 12.702662
tabel_data <- rbind(data.frame("y_aktual"=triceps$triceps,
"y_pred"=predict(mod_linear),
"residual"=residuals(mod_linear)))
tabel_data## y_aktual y_pred residual
## 1 3.4 8.798074 -5.398073843
## 2 4.0 8.336171 -4.336171174
## 3 4.2 8.364231 -4.164230898
## 4 4.2 8.677202 -4.477202306
## 5 4.4 8.381498 -3.981497986
## 6 4.4 8.759222 -4.359222149
## 7 4.8 8.552014 -3.752013362
## 8 4.8 8.362072 -3.562072044
## 9 4.8 8.575756 -3.775756155
## 10 5.0 8.355597 -3.355597021
## 11 5.0 8.649143 -3.649142581
## 12 5.0 8.653460 -3.653459528
## 13 5.2 8.573598 -3.373598063
## 14 5.2 8.353439 -3.153438738
## 15 5.2 8.346963 -3.146963525
## 16 5.2 8.772173 -3.572173068
## 17 5.2 8.627558 -3.427558658
## 18 5.2 8.372864 -3.172864585
## 19 5.4 8.353439 -2.953438452
## 20 5.4 8.806708 -3.406707529
## 21 5.4 8.441934 -3.041933794
## 22 5.4 8.355597 -2.955596925
## 23 5.4 8.573598 -3.173597777
## 24 5.4 8.754906 -3.354905408
## 25 5.4 8.580073 -3.180072991
## 26 5.4 8.441934 -3.041933794
## 27 5.5 8.657776 -3.157776268
## 28 5.6 8.716054 -3.116053905
## 29 5.6 8.703103 -3.103103271
## 30 5.6 8.364231 -2.764230803
## 31 5.6 8.340488 -2.740488216
## 32 5.6 8.495894 -2.895894580
## 33 5.8 8.817500 -3.017499594
## 34 5.8 8.465677 -2.665676493
## 35 5.8 8.478627 -2.678626920
## 36 5.8 8.463518 -2.663518019
## 37 5.8 8.830450 -3.030450022
## 38 6.0 8.782965 -2.782964831
## 39 6.0 8.493736 -2.493736217
## 40 6.0 8.700945 -2.700944909
## 41 6.0 8.422508 -2.422508249
## 42 6.0 8.485103 -2.485102530
## 43 6.0 8.638351 -2.638350627
## 44 6.0 8.435459 -2.435458676
## 45 6.2 8.703103 -2.503103367
## 46 6.2 8.653460 -2.453459719
## 47 6.2 8.450568 -2.250567768
## 48 6.2 8.614608 -2.414608025
## 49 6.4 8.785123 -2.385123209
## 50 6.4 8.666410 -2.266409860
## 51 6.4 8.383657 -1.983656459
## 52 6.6 8.459201 -1.859201359
## 53 6.6 8.666410 -2.066410051
## 54 6.6 8.657776 -2.057776364
## 55 6.6 8.670727 -2.070726997
## 56 6.8 8.763539 -1.963539000
## 57 6.8 8.644826 -1.844825650
## 58 6.8 8.830450 -2.030450022
## 59 7.0 8.495894 -1.495894484
## 60 7.0 8.463518 -1.463518210
## 61 7.0 8.467835 -1.467835156
## 62 7.0 8.651301 -1.651301055
## 63 7.0 8.605974 -1.605974147
## 64 7.0 8.782965 -1.782964831
## 65 7.0 8.599499 -1.599498933
## 66 7.0 8.504528 -1.504528171
## 67 7.2 8.461360 -1.261359928
## 68 7.2 8.731163 -1.531162901
## 69 7.4 8.815341 -1.415341216
## 70 7.4 8.413875 -1.013874466
## 71 8.0 8.316745 -0.316745327
## 72 8.0 8.787282 -0.787281778
## 73 8.4 8.651301 -0.251301436
## 74 8.6 8.683678 -0.083677153
## 75 8.8 8.789440 0.010559940
## 76 8.8 8.336171 0.463829017
## 77 9.0 8.754906 0.245094497
## 78 9.0 8.828292 0.171708261
## 79 9.8 8.834767 0.965233032
## 80 9.8 8.694469 1.105530702
## 81 10.0 8.623242 1.376758479
## 82 10.2 8.642667 1.557332442
## 83 10.2 8.547697 1.652302997
## 84 13.0 8.474310 4.525689630
## 85 14.2 8.452726 5.747273759
## 86 16.0 8.631875 7.368124792
## 87 9.4 14.077578 -4.677578494
## 88 8.2 6.840384 1.359616282
## 89 21.2 13.043693 8.156307429
## 90 9.6 7.116662 2.483338564
## 91 10.2 11.457252 -1.257252372
## 92 13.2 10.406100 2.793900193
## 93 13.6 14.986275 -1.386274771
## 94 12.2 10.026217 2.173782828
## 95 6.8 10.065069 -3.265068484
## 96 6.4 10.097445 -3.697444854
## 97 14.0 9.352789 4.647211215
## 98 6.0 7.876427 -1.876426986
## 99 11.2 10.108237 1.091762494
## 100 7.4 7.382148 0.017852251
## 101 8.2 11.560856 -3.360856615
## 102 13.4 11.850085 1.549914374
## 103 17.6 11.191766 6.408234639
## 104 15.6 15.633802 -0.033801906
## 105 4.2 7.766347 -3.566347514
## 106 14.0 10.123346 3.876653784
## 107 8.2 7.013057 1.186942389
## 108 8.2 10.932755 -2.732755326
## 109 21.8 12.139314 9.660685173
## 110 7.8 6.682819 1.117181603
## 111 6.0 6.531729 -0.531728912
## 112 9.2 9.149897 0.050102770
## 113 6.4 7.133929 -0.733929096
## 114 17.4 14.915047 2.484952846
## 115 8.6 7.371356 1.228644594
## 116 5.8 7.248326 -1.448325404
## 117 8.0 8.959956 -0.959955722
## 118 10.0 12.860228 -2.860227641
## 119 13.6 14.120747 -0.520746372
## 120 7.6 8.182923 -0.582923172
## 121 8.2 6.421649 1.778350508
## 122 8.0 6.892186 1.107814299
## 123 9.0 7.403732 1.596267836
## 124 23.4 12.048660 11.351339370
## 125 6.4 7.054067 -0.654067389
## 126 9.0 11.297528 -2.297528459
## 127 5.2 8.867143 -3.667143624
## 128 5.8 8.131121 -2.331120765
## 129 8.2 10.414734 -2.214733700
## 130 4.2 17.151174 -12.951174136
## 131 4.2 7.677852 -3.477852172
## 132 22.6 10.552872 12.047127882
## 133 6.8 8.107378 -1.307378177
## 134 9.4 9.106728 0.293271219
## 135 8.0 13.037218 -5.037218326
## 136 11.0 10.395308 0.604692338
## 137 11.8 10.473011 1.326989552
## 138 8.4 6.501511 1.898488636
## 139 15.8 11.161548 4.638452249
## 140 17.4 11.068736 6.331263966
## 141 6.0 6.570581 -0.570580555
## 142 4.4 8.012408 -3.612407511
## 143 12.6 12.609850 -0.009849722
## 144 10.6 13.943756 -3.343755687
## 145 9.2 6.365530 2.834469525
## 146 7.8 6.365530 1.434469906
## 147 6.0 6.510145 -0.510144695
## 148 7.2 7.669218 -0.469218485
## 149 16.2 11.146439 5.053561722
## 150 5.2 7.496544 -2.296544541
## 151 6.6 7.129612 -0.529612443
## 152 6.0 8.267102 -2.267101679
## 153 6.2 6.678502 -0.478501935
## 154 13.6 10.453585 3.146415590
## 155 8.0 10.978082 -2.978081837
## 156 9.0 6.454026 2.545974322
## 157 11.2 11.105429 0.094570936
## 158 10.2 12.579632 -2.379632493
## 159 6.2 7.844051 -1.644050799
## 160 5.8 7.310920 -1.510919685
## 161 8.4 9.283719 -0.883719671
## 162 14.6 13.691221 0.908779500
## 163 6.6 7.295811 -0.695811071
## 164 9.6 9.303145 0.296855245
## 165 5.2 7.073493 -1.873493471
## 166 10.4 9.307462 1.092537741
## 167 7.4 9.244868 -1.844867500
## 168 10.2 6.777789 3.422210563
## 169 6.8 7.969239 -1.169238981
## 170 24.8 17.367016 7.432982913
## 171 19.0 14.122906 4.877094362
## 172 3.6 8.992332 -5.392332092
## 173 8.2 7.082127 1.117872842
## 174 7.0 7.338979 -0.338979410
## 175 6.2 9.020392 -2.820391721
## 176 4.6 7.798724 -3.198723796
## 177 9.4 6.833908 2.566091356
## 178 6.6 9.326888 -2.726887819
## 179 5.6 8.858510 -3.258509842
## 180 6.4 7.721020 -1.321020320
## 181 21.6 13.995559 7.604441780
## 182 15.2 17.367016 -2.167016514
## 183 12.4 12.109096 0.290903767
## 184 5.8 7.772823 -1.972822449
## 185 13.6 13.693379 -0.093378561
## 186 19.4 14.241619 5.158380837
## 187 7.0 9.020392 -2.020391530
## 188 6.8 9.119679 -2.319678842
## 189 7.0 9.132630 -2.132629666
## 190 10.4 9.430492 0.969507652
## 191 7.0 6.404382 0.595618086
## 192 14.2 13.330764 0.869236128
## 193 8.8 9.093778 -0.293777781
## 194 9.2 6.941829 2.258170357
## 195 6.4 9.074352 -2.674352029
## 196 6.8 8.148388 -1.348388138
## 197 5.0 8.938371 -3.938371402
## 198 7.2 8.269260 -1.069260342
## 199 7.6 9.708929 -2.108928928
## 200 8.2 9.197382 -0.997382405
## 201 8.6 7.302286 1.297714193
## 202 5.4 6.954780 -1.554779887
## 203 6.8 9.255660 -2.455659565
## 204 5.0 8.247676 -3.247675832
## 205 8.4 6.546838 1.853161729
## 206 24.8 12.773890 12.026108876
## 207 5.4 7.686486 -2.286485573
## 208 6.8 6.831750 -0.031749650
## 209 8.0 7.246167 0.753832776
## 210 6.2 9.272927 -3.072927320
## 211 6.4 6.963414 -0.563413574
## 212 7.0 6.516620 0.483380040
## 213 6.6 9.698136 -3.098136562
## 214 7.2 6.590006 0.609993433
## 215 9.0 9.756414 -0.756414008
## 216 7.0 9.596691 -2.596690697
## 217 7.8 9.683028 -1.883027376
## 218 11.2 13.546606 -2.346606250
## 219 12.2 6.980681 5.219318715
## 220 16.0 9.706770 6.293229640
## 221 11.0 15.849645 -4.849644666
## 222 13.4 14.409976 -1.009975955
## 223 6.0 9.639859 -3.639859132
## 224 8.2 12.270978 -4.070977826
## 225 18.2 14.772591 3.427409928
## 226 5.8 8.118170 -2.318170131
## 227 7.6 7.453376 0.146623989
## 228 6.6 6.339629 0.260370693
## 229 7.0 7.347613 -0.347613097
## 230 9.8 9.836276 -0.036275678
## 231 6.0 7.733971 -1.733970946
## 232 17.2 13.848786 3.351215044
## 233 9.8 6.715195 3.084805226
## 234 11.0 9.434809 1.565191087
## 235 6.2 9.432650 -3.232650631
## 236 12.0 12.914188 -0.914188236
## 237 10.4 6.766997 3.633002481
## 238 9.2 15.849645 -6.649644857
## 239 7.6 6.421649 1.178350604
## 240 15.4 14.483362 0.916637604
## 241 6.0 8.157022 -2.157022016
## 242 8.4 6.497194 1.902805480
## 243 7.4 15.849645 -8.449644571
## 244 19.0 10.278753 8.721247420
## 245 7.4 9.654968 -2.254968143
## 246 9.6 13.652369 -4.052368806
## 247 16.2 11.539272 4.660728659
## 248 12.2 10.600358 1.599642134
## 249 10.8 11.776699 -0.976698612
## 250 4.8 8.085794 -3.285793857
## 251 14.0 10.090970 3.909030058
## 252 9.2 9.542730 -0.342730293
## 253 5.4 7.936863 -2.536862802
## 254 5.6 7.278544 -1.678543697
## 255 7.4 9.572948 -2.172948014
## 256 5.0 9.156372 -4.156372253
## 257 10.0 9.566473 0.433527310
## 258 7.2 8.970748 -1.770748073
## 259 7.8 6.466976 1.333023982
## 260 9.2 11.373073 -2.173073564
## 261 7.2 14.552432 -7.352431701
## 262 5.4 7.995140 -2.595140137
## 263 7.8 7.060543 0.739457441
## 264 6.0 7.528921 -1.528920728
## 265 12.0 9.182273 2.817726686
## 266 8.6 6.309411 2.290589113
## 267 10.4 10.026217 0.373782637
## 268 12.6 10.729863 1.870137197
## 269 8.0 10.276594 -2.276594107
## 270 8.6 7.166305 1.433694916
## 271 5.0 13.853103 -8.853102665
## 272 8.2 9.037659 -0.837659095
## 273 9.2 7.205157 1.994842649
## 274 3.2 9.777998 -6.577998280
## 275 16.8 12.074561 4.725438133
## 276 6.0 7.867793 -1.867793196
## 277 12.2 12.473870 -0.273869777
## 278 9.0 14.768274 -5.768273889
## 279 16.2 14.125064 2.074937063
## 280 9.4 10.738497 -1.338497459
## 281 7.0 8.893044 -1.893044494
## 282 9.0 14.770433 -5.770432774
## 283 11.0 14.768274 -3.768273889
## 284 15.6 14.768274 0.831726493
## 285 9.0 9.691661 -0.691661459
## 286 15.4 10.280911 5.119088565
## 287 11.0 12.184641 -1.184640766
## 288 12.0 13.907063 -1.907063260
## 289 8.2 6.387115 1.812885282
## 290 6.4 9.223283 -2.823283386
## 291 29.2 13.963182 15.236818847
## 292 7.2 8.888728 -1.688727944
## 293 24.8 12.398325 12.401674566
## 294 10.6 9.711087 0.888913075
## 295 13.0 13.395516 -0.395516230
## 296 7.8 7.114503 0.685496846
## 297 13.0 13.786191 -0.786191231
## 298 10.0 14.392709 -4.392708611
## 299 7.0 7.300128 -0.300127819
## 300 7.8 15.202118 -7.402117340
## 301 5.2 7.207316 -2.007315721
## 302 14.0 14.321480 -0.321480231
## 303 15.0 15.417960 -0.417959909
## 304 4.0 9.175798 -5.175798100
## 305 11.8 7.153355 4.646645255
## 306 8.0 9.639859 -1.639859132
## 307 10.2 6.797215 3.402784768
## 308 14.2 9.182273 5.017726495
## 309 12.0 15.847486 -3.847485781
## 310 11.4 8.912470 2.487529278
## 311 12.0 11.081686 0.918313920
## 312 6.6 6.943988 -0.343987969
## 313 8.2 7.205157 0.994842649
## 314 20.2 15.199959 5.000042117
## 315 14.6 16.065487 -1.465486663
## 316 14.2 16.274854 -2.074853783
## 317 10.2 6.413016 3.786984195
## 318 10.0 16.495013 -6.495012917
## 319 20.2 15.851803 4.348198035
## 320 11.0 15.849645 -4.849644666
## 321 8.4 6.855492 1.544507139
## 322 14.0 12.180324 1.819676180
## 323 10.2 6.859809 3.340190486
## 324 9.8 6.803690 2.996309884
## 325 5.2 7.518129 -2.318128758
## 326 19.0 14.701363 4.298636722
## 327 6.2 9.171481 -2.971481345
## 328 8.2 6.883552 1.316447796
## 329 6.6 12.031393 -5.431392970
## 330 7.2 6.341788 0.858212176
## 331 6.4 9.708929 -3.308928738
## 332 15.2 10.529130 4.670870103
## 333 6.6 7.151197 -0.551196661
## 334 13.2 9.965781 3.234218842
## 335 27.0 16.935332 10.064668433
## 336 9.0 16.931015 -7.931014620
## 337 13.8 16.926698 -3.126697483
## 338 19.0 15.204276 3.795724408
## 339 9.4 14.511422 -5.111422136
## 340 9.8 6.572739 3.227261214
## 341 30.4 13.958865 16.441134649
## 342 8.4 7.129612 1.270387271
## 343 8.4 6.486402 1.913597588
## 344 14.2 9.331205 4.868795139
## 345 6.4 8.191557 -1.791556668
## 346 9.2 6.438917 2.761083109
## 347 6.2 7.218108 -1.018107881
## 348 9.0 7.390782 1.609218366
## 349 7.0 12.402642 -5.402641618
## 350 8.2 7.712387 0.487613081
## 351 6.0 7.824625 -1.824624761
## 352 8.2 7.077810 1.122189686
## 353 8.2 6.898661 1.301338843
## 354 9.8 15.847486 -6.047485591
## 355 10.0 15.847486 -5.847485781
## 356 6.2 7.518129 -1.318128758
## 357 7.6 9.346314 -1.746313666
## 358 5.8 9.799583 -3.999582458
## 359 11.4 12.180324 -0.780324201
## 360 6.8 8.923263 -2.123262310
## 361 17.0 15.417960 1.582040091
## 362 20.6 16.497172 4.102828580
## 363 12.4 10.900379 1.499620757
## 364 7.6 8.286528 -0.686527621
## 365 7.0 9.393799 -2.393798952
## 366 11.4 10.166514 1.233485174
## 367 9.2 6.479927 2.720073070
## 368 6.4 9.136946 -2.736946311
## 369 19.8 11.204717 8.595282655
## 370 8.8 6.788581 2.011418836
## 371 10.2 13.697696 -3.497696080
## 372 27.4 13.475379 13.924621116
## 373 5.0 11.955848 -6.955847960
## 374 21.0 16.065487 4.934512955
## 375 11.8 17.142540 -5.342539862
## 376 5.6 9.534096 -3.934096511
## 377 4.6 13.978291 -9.378290912
## 378 12.4 11.964481 0.435518177
## 379 19.2 13.598409 5.601592170
## 380 8.0 12.173849 -4.173848812
## 381 7.6 6.760522 0.839478084
## 382 8.8 6.823116 1.976884037
## 383 8.4 6.883552 1.516447605
## 384 8.2 6.270560 1.929440164
## 385 6.2 7.187890 -0.987889977
## 386 7.8 7.321712 0.478288155
## 387 7.6 14.552432 -6.952431606
## 388 20.2 15.208593 4.991408224
## 389 21.5 13.296229 8.203771067
## 390 18.2 12.098304 6.101696866
## 391 17.2 12.070244 5.129756606
## 392 6.0 7.503020 -1.503019667
## 393 8.4 6.462659 1.937340253
## 394 11.8 9.911820 1.888179818
## 395 6.0 6.633175 -0.633174836
## 396 4.2 9.510354 -5.310354019
## 397 7.4 9.415383 -2.015382971
## 398 6.2 7.295811 -1.095811166
## 399 7.6 6.691452 0.908547630
## 400 11.2 11.355806 -0.155806191
## 401 7.0 8.157022 -1.157022016
## 402 6.8 6.831750 -0.031749650
## 403 18.2 15.417960 2.782040854
## 404 6.4 6.704403 -0.304402709
## 405 8.0 7.138246 0.861753965
## 406 9.0 6.413016 2.586984386
## 407 8.8 14.856769 -6.056769040
## 408 9.2 10.460060 -1.260060402
## 409 8.0 6.721670 1.278329770
## 410 5.8 7.807357 -2.007357197
## 411 20.4 11.770223 8.629776236
## 412 15.8 12.262344 3.537656037
## 413 18.0 9.713246 8.286754221
## 414 19.0 11.563015 7.436985103
## 415 9.2 11.595391 -2.395391362
## 416 16.0 11.647193 4.352806707
## 417 4.6 8.264943 -3.664943301
## 418 7.4 9.244868 -1.844867500
## 419 6.4 9.838434 -3.438434247
## 420 23.4 9.335521 14.064478208
## 421 6.2 7.556980 -1.356980452
## 422 17.8 13.261694 4.538305051
## 423 13.2 13.261694 -0.061694376
## 424 6.4 7.779298 -1.379297758
## 425 6.2 7.921754 -1.721753981
## 426 7.8 6.372006 1.427994628
## 427 8.8 9.283719 -0.483719099
## 428 8.0 7.015216 0.984784158
## 429 8.0 6.417332 1.582667542
## 430 11.2 6.725987 4.474012736
## 431 6.6 8.163497 -1.563497325
## 432 7.6 7.090761 0.509239251
## 433 5.0 9.262135 -4.262134969
## 434 14.8 9.631225 5.168774746
## 435 4.0 8.847718 -4.847717586
## 436 6.0 7.921754 -1.921753791
## 437 6.2 6.902978 -0.702978000
## 438 13.8 13.661003 0.138997111
## 439 36.8 14.125064 22.674935537
## 440 10.0 10.993191 -0.993190738
## 441 14.0 13.477537 0.522463436
## 442 6.0 7.608782 -1.608782383
## 443 7.6 13.557398 -5.957398109
## 444 5.8 7.153355 -1.353354745
## 445 10.8 6.555472 4.244528614
## 446 26.2 13.477537 12.722464199
## 447 7.6 6.946146 0.653853609
## 448 7.4 7.418841 -0.018840970
## 449 5.8 7.684327 -1.884327004
## 450 9.2 13.473220 -4.273219808
## 451 5.6 7.932546 -2.332546046
## 452 10.4 9.713246 0.686753839
## 453 20.2 13.261694 6.938306577
## 454 11.4 10.665111 0.734888983
## 455 9.0 12.219176 -3.219175514
## 456 7.0 8.146230 -1.146229856
## 457 7.8 7.092919 0.707081064
## 458 10.4 8.297319 2.102680139
## 459 5.2 7.675694 -2.475693699
## 460 8.0 6.741096 1.258903975
## 461 7.0 9.430492 -2.430491967
## 462 4.6 8.023200 -3.423199861
## 463 14.8 13.693379 1.106621248
## 464 9.8 6.626700 3.173300620
## 465 13.2 12.232126 0.967873868
## 466 6.0 6.477768 -0.477768317
## 467 13.4 12.542939 0.857060537
## 468 21.4 13.475379 7.924621116
## 469 8.4 11.431351 -3.031351296
## 470 16.4 12.396166 4.003833420
## 471 17.2 14.086212 3.113788757
## 472 7.2 6.857651 0.342348908
## 473 12.0 9.883761 2.116238956
## 474 27.2 16.719489 10.480511575
## 475 5.4 8.893044 -3.493044399
## 476 5.8 6.926720 -1.126720309
## 477 6.2 7.997299 -1.797298896
## 478 8.8 6.717353 2.082646804
## 479 7.0 7.572089 -0.572089162
## 480 5.0 7.779298 -2.779297854
## 481 14.8 9.549205 5.250794874
## 482 6.0 9.115362 -3.115362292
## 483 12.8 9.976573 2.823426858
## 484 8.2 7.000107 1.199892919
## 485 16.0 12.314146 3.685853724
## 486 8.2 6.972047 1.227952453
## 487 8.8 6.993632 1.806368566
## 488 7.2 6.393590 0.806410003
## 489 26.0 14.768274 11.231726111
## 490 7.0 9.035500 -2.035500431
## 491 7.4 7.233217 0.166783402
## 492 11.2 13.641577 -2.441577424
## 493 7.6 7.060543 0.539457155
## 494 11.4 14.804968 -3.404967903
## 495 8.4 16.928857 -8.528856940
## 496 7.0 7.440425 -0.440425385
## 497 6.2 11.398975 -5.198974831
## 498 7.8 8.100903 -0.300902758
## 499 5.8 7.852684 -2.052684105
## 500 14.0 10.902537 3.097463077
## 501 5.8 8.133279 -2.333279238
## 502 9.6 6.499353 3.100647821
## 503 23.2 12.044343 11.155657460
## 504 8.2 8.299478 -0.099478144
## 505 9.6 6.648284 2.951716593
## 506 6.6 15.847486 -9.247485877
## 507 10.6 10.801091 -0.201090771
## 508 9.0 6.758363 2.241636601
## 509 5.4 7.334663 -1.934662471
## 510 5.6 7.513812 -1.913811819
## 511 15.0 11.966640 3.033360086
## 512 10.2 6.454026 3.745974131
## 513 9.0 6.400065 2.599934929
## 514 12.7 12.609850 0.090149706
## 515 13.2 10.039167 3.160832401
## 516 8.6 6.931037 1.668963038
## 517 6.4 7.967081 -1.567080603
## 518 7.4 6.410857 0.989142903
## 519 8.2 11.893253 -3.693253664
## 520 6.6 9.581582 -2.981581892
## 521 4.2 8.154864 -3.954863734
## 522 9.8 15.631643 -5.831643212
## 523 17.5 13.924330 3.575669778
## 524 8.4 10.293861 -1.893861862
## 525 8.2 6.922404 1.277596204
## 526 7.0 6.525254 0.474746353
## 527 8.2 9.044134 -0.844134308
## 528 11.4 13.477537 -2.077536946
## 529 6.8 7.272068 -0.472068094
## 530 13.4 15.849645 -2.449645048
## 531 9.2 7.341138 1.858861926
## 532 14.4 12.178165 2.221834272
## 533 11.4 16.067645 -4.667645488
## 534 11.2 11.496103 -0.296103654
## 535 27.2 12.594741 14.605259560
## 536 8.4 6.833908 1.566091356
## 537 9.0 6.898661 2.101339034
## 538 12.6 15.199959 -2.599958264
## 539 10.6 6.479927 4.120073642
## 540 8.6 14.984116 -6.384115886
## 541 7.2 7.397257 -0.197257039
## 542 7.2 7.395098 -0.195098668
## 543 5.3 13.259536 -7.959535933
## 544 6.6 8.910312 -2.310311963
## 545 16.0 7.032483 8.967516784
## 546 8.0 10.062910 -2.062910202
## 547 7.8 7.423158 0.376842282
## 548 8.8 11.720580 -2.920579544
## 549 18.2 16.065487 2.134513718
## 550 10.0 12.583949 -2.583949249
## 551 9.2 12.374582 -3.174582481
## 552 11.4 6.516620 4.883379659
## 553 8.0 9.398116 -1.398115693
## 554 16.0 14.986275 1.013724848
## 555 15.6 10.065069 5.534931706
## 556 7.0 7.334663 -0.334662566
## 557 14.8 11.003983 3.796017087
## 558 4.0 11.601867 -7.601866591
## 559 24.0 15.202118 8.797882469
## 560 10.0 10.496753 -0.496753432
## 561 8.8 6.890027 1.909972912
## 562 6.8 8.979382 -2.179381378
## 563 7.0 7.136088 -0.136087562
## 564 5.4 9.145580 -3.745579998
## 565 5.4 7.287177 -1.887177193
## 566 23.6 10.688853 12.911147364
## 567 6.0 7.882902 -1.882902200
## 568 7.0 8.215300 -1.215299557
## 569 36.6 11.476678 25.123320858
## 570 9.8 7.198682 2.601318348
## 571 27.2 15.417960 11.782040854
## 572 11.4 6.786423 4.613576685
## 573 6.8 6.404382 0.395618276
## 574 10.0 6.989315 3.010685219
## 575 15.8 10.116871 5.683129394
## 576 9.0 10.179465 -1.179465284
## 577 5.4 8.003774 -2.603773824
## 578 33.4 14.986275 18.413726374
## 579 8.6 6.443234 2.156766837
## 580 9.0 7.071335 1.928665090
## 581 11.0 14.986275 -3.986275152
## 582 12.6 11.155073 1.444927860
## 583 8.0 6.853334 1.146665942
## 584 16.4 10.291703 6.108296611
## 585 10.2 6.419491 3.780508930
## 586 7.4 6.417332 0.982667638
## 587 6.8 8.087953 -1.287952330
## 588 8.0 6.432441 1.567558565
## 589 7.8 6.384956 1.415044085
## 590 9.2 15.415801 -6.215801215
## 591 6.8 6.313728 0.486272066
## 592 24.0 14.094846 9.905154102
## 593 15.0 14.584808 0.415191804
## 594 6.0 6.570581 -0.570580555
## 595 7.8 6.512303 1.287697074
## 596 7.0 9.970098 -2.970097913
## 597 8.4 9.037659 -0.637659285
## 598 8.0 7.710228 0.289771642
## 599 6.0 6.441075 -0.441075122
## 600 6.4 12.247235 -5.847235158
## 601 7.6 7.552663 0.047336487
## 602 11.8 10.062910 1.737089989
## 603 5.6 7.589357 -1.989356631
## 604 5.2 7.630367 -2.430366791
## 605 7.0 7.157672 -0.157671779
## 606 7.7 7.004424 0.695576076
## 607 8.8 6.445392 2.354608225
## 608 8.8 11.964481 -3.164481251
## 609 11.0 6.372006 4.627994437
## 610 11.4 14.213559 -2.813559423
## 611 6.0 8.046942 -2.046942354
## 612 5.6 6.982840 -1.382839611
## 613 8.4 6.333154 2.066845685
## 614 7.4 7.639000 -0.239000192
## 615 11.2 9.903187 1.296812918
## 616 7.0 10.375882 -3.375881815
## 617 9.0 6.415174 2.584825964
## 618 7.0 6.413016 0.586984386
## 619 8.6 6.410857 2.189143189
## 620 12.0 16.067645 -4.067645106
## 621 8.2 9.417542 -1.217541730
## 622 15.6 16.713014 -1.113013799
## 623 6.2 7.343296 -1.143296444
## 624 5.2 8.210983 -3.010982801
## 625 18.6 9.983049 8.616951629
## 626 9.2 12.024917 -2.824917646
## 627 4.4 7.941180 -3.541179542
## 628 4.8 7.615258 -2.815257509
## 629 8.4 9.262135 -0.862135351
## 630 10.0 10.714754 -0.714754284
## 631 6.2 7.533238 -1.333237762
## 632 5.4 6.754047 -1.354046460
## 633 6.8 6.374164 0.425836206
## 634 8.2 7.274227 0.925773154
## 635 9.2 8.994490 0.205509340
## 636 10.0 13.015634 -3.015634006
## 637 5.2 9.139105 -3.939105070
## 638 10.2 11.664461 -1.464460858
## 639 9.0 9.616117 -0.616116544
## 640 16.2 12.603375 3.596625667
## 641 9.8 6.721670 3.078329961
## 642 6.6 12.055135 -5.455135352
## 643 5.8 6.808007 -1.008006960
## 644 6.4 9.141263 -2.741263257
## 645 6.2 7.520287 -1.320287231
## 646 7.0 6.766997 0.233002862
## 647 11.2 6.529570 4.670429319
## 648 7.2 7.585040 -0.385039883
## 649 8.2 6.775631 1.424368985
## 650 9.0 6.782106 2.217893910
## 651 4.4 7.345455 -2.945454631
## 652 4.6 7.764189 -3.164189048
## 653 8.2 6.792898 1.407101611
## 654 7.2 7.794407 -0.594407048
## 655 14.2 11.273786 2.926213732
## 656 8.4 6.525254 1.874745972
## 657 8.0 6.553313 1.446686845
## 658 22.2 15.204276 6.995725171
## 659 7.6 6.546838 1.053162015
## 660 5.4 7.187890 -1.787889691
## 661 6.4 6.566264 -0.166263616
## 662 17.6 11.405450 6.194550733
## 663 7.4 8.139755 -0.739754547
## 664 6.8 7.507337 -0.707336320
## 665 5.2 16.065487 -10.865487235
## 666 6.2 7.960605 -1.760605675
## 667 5.2 8.232567 -3.032567122
## 668 9.8 6.529570 3.270429700
## 669 14.0 12.719930 1.280070234
## 670 8.0 7.326029 0.673971121
## 671 16.8 9.829800 6.970198787
## 672 9.2 9.311779 -0.111779014
## 673 8.0 9.898870 -1.898869945
## 674 17.6 10.447110 7.152890598
## 675 13.6 15.130889 -1.530888769
## 676 6.8 6.732462 0.067537852
## 677 9.0 10.021900 -1.021900035
## 678 11.0 11.970957 -0.970956861
## 679 9.0 9.413225 -0.413224593
## 680 14.0 11.299687 2.700313068
## 681 6.0 8.234725 -2.234725198
## 682 9.6 7.185731 2.414269069
## 683 9.2 10.887428 -1.687428213
## 684 7.2 9.719721 -2.519720978
## 685 11.6 6.905136 4.694864150
## 686 6.4 9.115362 -2.715362197
## 687 5.6 8.929738 -3.329737810
## 688 4.0 7.537554 -3.537554414
## 689 5.8 7.228900 -1.428899660
## 690 20.4 13.332923 7.067077053
## 691 19.8 14.125064 5.674935537
## 692 14.0 14.554590 -0.554590395
## 693 14.6 11.103270 3.496729981
## 694 10.2 9.199541 1.000459121
## 695 12.0 9.350630 2.649369688
## 696 7.0 6.326679 0.673321332
## 697 6.2 7.546188 -1.346188292
## 698 13.6 13.725756 -0.125755247
## 699 18.0 11.206875 6.793125357
## 700 11.0 10.701804 0.298196144
## 701 6.2 7.658426 -1.458426325
## 702 5.0 7.865635 -2.865634826
## 703 10.4 7.187890 3.212109833
## 704 9.2 9.754256 -0.554255725
## 705 7.0 7.526762 -0.526762254
## 706 5.6 6.348263 -0.748262993
## 707 15.2 17.360541 -2.160541507
## 708 14.4 12.186799 2.213200379
## 709 6.0 8.940530 -2.940529875
## 710 18.0 10.280911 7.719088946
## 711 17.0 13.475379 3.524621497
## 712 7.5 7.382148 0.117852156
## 713 12.8 15.847486 -3.047485591
## 714 7.0 6.810166 0.189834428
## 715 5.4 9.093778 -3.693777876
## 716 4.6 8.159180 -3.559180585
## 717 9.2 7.064860 2.135140216
## 718 12.0 10.436317 1.563682582
## 719 19.2 11.813392 7.386608740
## 720 11.0 9.184432 1.815568213
## 721 10.2 8.174289 2.025710419
## 722 6.0 7.444742 -1.444742229
## 723 9.0 11.401133 -2.401133113
## 724 7.8 7.477119 0.322881688
## 725 13.8 13.693379 0.106621248
## 726 8.2 15.417960 -7.217960100
## 727 8.6 7.496544 1.103456031
## 728 11.2 13.907063 -2.707063450
## 729 8.0 7.142563 0.857437122
## 730 13.0 8.888728 4.111272247
## 731 18.6 14.455302 4.144698106
## 732 8.2 7.392940 0.807059805
## 733 17.0 9.935563 7.064436834
## 734 8.2 8.299478 -0.099478144
## 735 6.4 7.768506 -1.368505701
## 736 12.4 14.915047 -2.515047154
## 737 6.6 6.676343 -0.076343418
## 738 15.0 14.986275 0.013724848
## 739 9.0 10.507545 -1.507545386
## 740 5.4 7.923912 -2.523912168
## 741 7.0 16.281329 -9.281329423
## 742 6.8 8.103061 -1.303061231
## 743 14.5 14.543798 -0.043797618
## 744 8.8 14.472570 -5.672569870
## 745 7.0 7.522445 -0.522445411
## 746 6.2 6.611591 -0.411590784
## 747 10.6 8.871460 1.728540002
## 748 6.8 6.527412 0.272588122
## 749 6.8 8.992332 -2.192331806
## 750 16.0 16.065487 -0.065487045
## 751 7.2 7.332504 -0.132504387
## 752 7.6 15.204276 -7.604275688
## 753 11.6 9.816850 1.783150359
## 754 11.0 13.924330 -2.924330222
## 755 8.0 7.202999 0.797001313
## 756 5.4 6.333154 -0.933153838
## 757 11.6 12.825692 -1.225692101
## 758 11.2 13.689062 -2.489062187
## 759 7.4 7.466326 -0.066326351
## 760 6.4 7.669218 -1.269218199
## 761 7.0 7.067018 -0.067018066
## 762 4.2 14.770433 -10.570432964
## 763 8.8 7.330346 1.469654468
## 764 6.2 6.669868 -0.469868248
## 765 6.6 7.423158 -0.823158004
## 766 8.4 6.590006 1.809993243
## 767 4.0 11.314796 -7.314795833
## 768 7.0 8.113854 -1.113853582
## 769 8.0 11.066577 -3.066577180
## 770 20.0 12.063769 7.936230850
## 771 19.0 15.202118 3.797882469
## 772 5.4 10.673744 -5.273744021
## 773 24.6 16.706538 7.893462032
## 774 5.0 8.005932 -3.005932392
## 775 11.0 9.801741 1.198258878
## 776 5.0 8.882252 -3.882252334
## 777 8.6 7.224583 1.375417375
## 778 12.3 16.713014 -4.413013990
## 779 6.0 7.835417 -1.835416922
## 780 10.6 9.864335 0.735665184
## 781 7.0 6.641809 0.358191477
## 782 13.6 14.768274 -1.168273507
## 783 7.6 12.137156 -4.537155686
## 784 13.6 14.697046 -1.097045951
## 785 7.8 6.993632 0.806368566
## 786 6.8 7.967081 -1.167080508
## 787 5.4 7.155513 -1.755513313
## 788 10.0 9.937722 0.062278361
## 789 5.6 7.524604 -1.924603979
## 790 5.6 9.348472 -3.748472140
## 791 28.0 11.621292 16.378707973
## 792 10.0 7.518129 2.481871433
## 793 9.4 6.922404 2.477596014
## 794 5.2 8.157022 -2.957022207
## 795 14.0 10.496753 3.503246568
## 796 9.8 14.554590 -4.754590204
## 797 6.4 6.507986 -0.107986178
## 798 7.4 7.582881 -0.182881227
## 799 6.0 7.561297 -1.561297105
## 800 5.0 17.144699 -12.144698937
## 801 8.4 8.295161 0.104838406
## 802 17.4 11.925630 5.474369460
## 803 9.4 9.497403 -0.097403576
## 804 9.2 12.035709 -2.835709600
## 805 17.8 11.491787 6.308212308
## 806 7.0 9.419700 -2.419700013
## 807 11.0 11.707629 -0.707629307
## 808 6.4 6.434600 -0.034599762
## 809 11.0 10.401783 0.598217330
## 810 7.0 7.701595 -0.701594569
## 811 10.2 9.855702 0.344298093
## 812 9.2 9.424017 -0.224016944
## 813 6.2 7.362722 -1.162722291
## 814 8.0 7.308762 0.691238494
## 815 5.8 7.483594 -1.683593629
## 816 24.0 10.239901 13.760099114
## 817 8.0 7.030325 0.969675206
## 818 7.8 6.486402 1.313598161
## 819 20.8 13.259536 7.540463113
## 820 8.6 11.010458 -2.410457730
## 821 11.6 10.578773 1.021227027
## 822 6.6 7.425316 -0.825316477
## 823 8.6 7.464168 1.135832409
## 824 12.0 13.697696 -1.697695889
## 825 5.8 7.440425 -1.640425195
## 826 7.8 7.088602 0.711397907
## 827 10.4 9.989524 0.410475858
## 828 14.2 15.849645 -1.649644857
## 829 5.0 9.387324 -4.387323532
## 830 7.8 11.170182 -3.370181643
## 831 7.0 6.853334 0.146665942
## 832 7.0 8.979382 -1.979381569
## 833 8.0 7.505178 0.494821963
## 834 6.8 6.533887 0.266112857
## 835 19.6 12.454444 7.145556642
## 836 18.0 14.986275 3.013724848
## 837 14.2 12.050819 2.149181087
## 838 15.2 12.374582 2.825417519
## 839 5.0 6.372006 -1.372005563
## 840 17.6 15.202118 2.397882851
## 841 15.2 13.186150 2.013850127
## 842 24.8 17.360541 7.439457921
## 843 8.8 14.498471 -5.698470725
## 844 6.0 9.048451 -3.048451064
## 845 8.0 9.721879 -1.721879260
## 846 6.0 7.328187 -1.328187250
## 847 9.0 7.541871 1.458128742
## 848 5.6 7.967081 -2.367080794
## 849 9.4 9.527621 -0.127621583
## 850 7.0 12.394008 -5.394007725
## 851 8.0 6.680660 1.319339834
## 852 7.4 9.264293 -1.864293347
## 853 16.4 10.934914 5.465086010
## 854 12.0 9.212491 2.787508679
## 855 5.8 7.787932 -1.987931350
## 856 14.8 9.521146 5.278854408
## 857 4.0 8.152705 -4.152705276
## 858 8.0 6.253292 1.746707748
## 859 4.4 8.072843 -3.672843319
## 860 29.6 11.532797 18.067203697
## 861 11.2 9.657127 1.542873098
## 862 11.0 6.898661 4.101339034
## 863 4.2 11.316954 -7.116954497
## 864 6.8 9.370056 -2.570055968
## 865 13.8 14.261045 -0.461044438
## 866 14.0 14.986275 -0.986275152
## 867 5.2 7.852684 -2.652684486
## 868 5.4 6.510145 -1.110144599
## 869 7.4 6.393590 1.006410290
## 870 14.4 13.963182 0.436817703
## 871 8.2 6.449709 1.750291000
## 872 6.2 7.846209 -1.646209169
## 873 7.0 8.947005 -1.947005089
## 874 22.6 12.635751 9.964249011
## 875 12.8 15.199959 -2.399958455
## 876 7.7 7.995140 -0.295140423
## 877 6.6 7.459851 -0.859851225
## 878 7.0 7.077810 -0.077810124
## 879 5.2 8.273577 -3.073577083
## 880 5.8 7.421000 -1.620999348
## 881 7.0 7.764189 -0.764188953
## 882 5.9 7.906645 -2.006644795
## 883 9.8 6.516620 3.283380231
## 884 7.0 10.147089 -3.147088598
## 885 8.4 6.905136 1.494863388
## 886 4.4 8.981540 -4.581539741
## 887 22.0 15.204276 6.795724408
## 888 5.2 12.057294 -6.857293921
## 889 6.8 7.904486 -1.104486226
## 890 4.2 7.921754 -3.721753981
## 891 9.0 9.354947 -0.354947258
## 892 8.2 12.702662 -4.502662583
ggplot(triceps,aes(x=age, y=triceps)) +
geom_point(alpha=0.55, color="black") +
stat_smooth(method = "lm",
formula = y~x,lty = 1,
col = "blue",se = F)+
theme_bw()#Regresi Polinomial Derajat 2 (ordo 2)
mod_polinomial2 = lm(triceps ~ poly(age,2,raw = T),
data=triceps)
summary(mod_polinomial2)##
## Call:
## lm(formula = triceps ~ poly(age, 2, raw = T), data = triceps)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.5677 -2.4401 -0.4587 1.6368 24.9961
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.0229191 0.3063806 19.658 < 2e-16 ***
## poly(age, 2, raw = T)1 0.2434733 0.0364403 6.681 4.17e-11 ***
## poly(age, 2, raw = T)2 -0.0006257 0.0007926 -0.789 0.43
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.008 on 889 degrees of freedom
## Multiple R-squared: 0.3377, Adjusted R-squared: 0.3362
## F-statistic: 226.6 on 2 and 889 DF, p-value: < 2.2e-16
ggplot(triceps,aes(x=age, y=triceps)) +
geom_point(alpha=0.55, color="black") +
stat_smooth(method = "lm",
formula = y~poly(x,2,raw=T),
lty = 1, col = "blue",se = F)+
theme_bw()ggplot(triceps,aes(x=age, y=triceps)) +
geom_point(alpha=0.55, color="black") +
stat_smooth(method = "lm",
formula = y~poly(x,2,raw=T),
lty = 1, col = "blue",se = T)+
theme_bw()#Regresi Polinomial Derajat 3 (ordo 3)
mod_polinomial3 = lm(triceps ~ poly(age,3,raw = T),data=triceps)
summary(mod_polinomial3)##
## Call:
## lm(formula = triceps ~ poly(age, 3, raw = T), data = triceps)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.5832 -1.9284 -0.5415 1.3283 24.4440
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.004e+00 3.831e-01 20.893 < 2e-16 ***
## poly(age, 3, raw = T)1 -3.157e-01 7.721e-02 -4.089 4.73e-05 ***
## poly(age, 3, raw = T)2 3.101e-02 3.964e-03 7.824 1.45e-14 ***
## poly(age, 3, raw = T)3 -4.566e-04 5.612e-05 -8.135 1.38e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.868 on 888 degrees of freedom
## Multiple R-squared: 0.3836, Adjusted R-squared: 0.3815
## F-statistic: 184.2 on 3 and 888 DF, p-value: < 2.2e-16
ggplot(triceps,aes(x=age, y=triceps)) +
geom_point(alpha=0.55, color="black") +
stat_smooth(method = "lm",
formula = y~poly(x,3,raw=T),
lty = 1, col = "blue",se = T)+
theme_bw()AIC(mod_linear)## [1] 5011.515
AIC(mod_polinomial2)## [1] 5012.89
AIC(mod_polinomial3)## [1] 4950.774
MSE(predict(mod_linear), triceps$triceps)## [1] 16.01758
MSE(predict(mod_polinomial2), triceps$triceps)## [1] 16.00636
MSE(predict(mod_polinomial3), triceps$triceps)## [1] 14.89621
#Regresi Fungsi Tangga (5)
mod_tangga5 = lm(triceps ~ cut(age,5),data=triceps)
summary(mod_tangga5)##
## Call:
## lm(formula = triceps ~ cut(age, 5), data = triceps)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.5474 -2.0318 -0.4465 1.3682 23.3759
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.2318 0.1994 36.260 < 2e-16 ***
## cut(age, 5)(10.6,20.9] 1.6294 0.3244 5.023 6.16e-07 ***
## cut(age, 5)(20.9,31.2] 5.9923 0.4222 14.192 < 2e-16 ***
## cut(age, 5)(31.2,41.5] 7.5156 0.4506 16.678 < 2e-16 ***
## cut(age, 5)(41.5,51.8] 7.4561 0.5543 13.452 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.939 on 887 degrees of freedom
## Multiple R-squared: 0.3617, Adjusted R-squared: 0.3588
## F-statistic: 125.7 on 4 and 887 DF, p-value: < 2.2e-16
ggplot(triceps,aes(x=age, y=triceps)) +
geom_point(alpha=0.55, color="black") +
stat_smooth(method = "lm",
formula = y~cut(x,5),
lty = 1, col = "blue",se = F)+
theme_bw()
#Regresi Fungsi Tangga (7)
mod_tangga7 = lm(triceps ~ cut(age,7),data=triceps)
summary(mod_tangga7)##
## Call:
## lm(formula = triceps ~ cut(age, 7), data = triceps)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.8063 -1.7592 -0.4366 1.2894 23.1461
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.5592 0.2219 34.060 < 2e-16 ***
## cut(age, 7)(7.62,15] -0.6486 0.3326 -1.950 0.0515 .
## cut(age, 7)(15,22.3] 3.4534 0.4239 8.146 1.27e-15 ***
## cut(age, 7)(22.3,29.7] 5.8947 0.4604 12.804 < 2e-16 ***
## cut(age, 7)(29.7,37] 7.8471 0.5249 14.949 < 2e-16 ***
## cut(age, 7)(37,44.4] 6.9191 0.5391 12.835 < 2e-16 ***
## cut(age, 7)(44.4,51.8] 6.3013 0.6560 9.606 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.805 on 885 degrees of freedom
## Multiple R-squared: 0.4055, Adjusted R-squared: 0.4014
## F-statistic: 100.6 on 6 and 885 DF, p-value: < 2.2e-16
ggplot(triceps,aes(x=age, y=triceps)) +
geom_point(alpha=0.55, color="black") +
stat_smooth(method = "lm",
formula = y~cut(x,7),
lty = 1, col = "blue",se = F)+
theme_bw()
#Perbandingan Model
MSE = function(pred,actual){
mean((pred-actual)^2)
}#membandingkan model (breaks 7 paling baik karena mse-nya paling kecil)
nilai_MSE <- rbind(MSE(predict(mod_linear),triceps$triceps),
MSE(predict(mod_polinomial2),triceps$triceps),
MSE(predict(mod_polinomial3),triceps$triceps),
MSE(predict(mod_tangga5),triceps$triceps),
MSE(predict(mod_tangga7),triceps$triceps))
nama_model <- c("Linear","Poly (ordo=2)", "Poly (ordo=3)",
"Tangga (breaks=5)", "Tangga (breaks=7)")
data.frame(nama_model,nilai_MSE)## nama_model nilai_MSE
## 1 Linear 16.01758
## 2 Poly (ordo=2) 16.00636
## 3 Poly (ordo=3) 14.89621
## 4 Tangga (breaks=5) 15.42602
## 5 Tangga (breaks=7) 14.36779
#Evaluasi Model Menggunakan Cross Validation
#Regresi Linear
set.seed(123)
cross_val <- vfold_cv(triceps,v=10,strata = "triceps")
metric_linear <- map_dfr(cross_val$splits,
function(x){
mod <- lm(triceps ~ age,data=triceps[x$in_id,])
pred <- predict(mod,newdata=triceps[-x$in_id,])
truth <- triceps[-x$in_id,]$triceps
rmse <- mlr3measures::rmse(truth = truth,response = pred)
mae <- mlr3measures::mae(truth = truth,response = pred)
metric <- c(rmse,mae)
names(metric) <- c("rmse","mae")
return(metric)
}
)
metric_linear## # A tibble: 10 x 2
## rmse mae
## <dbl> <dbl>
## 1 3.65 2.82
## 2 4.62 3.22
## 3 4.38 3.00
## 4 3.85 2.80
## 5 3.08 2.36
## 6 3.83 2.81
## 7 3.59 2.78
## 8 4.66 3.06
## 9 3.50 2.56
## 10 4.59 2.93
# menghitung rata-rata untuk 10 folds
mean_metric_linear <- colMeans(metric_linear)
mean_metric_linear## rmse mae
## 3.973249 2.833886
#Polynomial Derajat 2 (ordo 2)
set.seed(123)
cross_val <- vfold_cv(triceps,v=10,strata = "triceps") #V(lipatan) biasa dipakai 10 dan 5
metric_poly2 <- map_dfr(cross_val$splits,
function(x){
mod <- lm(triceps ~ poly(age,2,raw = T),data=triceps[x$in_id,])
pred <- predict(mod,newdata=triceps[-x$in_id,])
truth <- triceps[-x$in_id,]$triceps
rmse <- mlr3measures::rmse(truth = truth,response = pred)
mae <- mlr3measures::mae(truth = truth,response = pred)
metric <- c(rmse,mae)
names(metric) <- c("rmse","mae") #mae absolut
return(metric)
}
)
metric_poly2## # A tibble: 10 x 2
## rmse mae
## <dbl> <dbl>
## 1 3.64 2.82
## 2 4.62 3.26
## 3 4.39 3.02
## 4 3.85 2.81
## 5 3.10 2.38
## 6 3.82 2.81
## 7 3.62 2.83
## 8 4.65 3.07
## 9 3.50 2.57
## 10 4.59 2.94
# menghitung rata-rata untuk 10 folds
mean_metric_poly2 <- colMeans(metric_poly2)
mean_metric_poly2## rmse mae
## 3.977777 2.851787
#Polynomial Derajat 3 (ordo 3)
set.seed(123)
cross_val <- vfold_cv(triceps,v=10,strata = "triceps")
metric_poly3 <- map_dfr(cross_val$splits,
function(x){
mod <- lm(triceps ~ poly(age,3,raw = T),data=triceps[x$in_id,])
pred <- predict(mod,newdata=triceps[-x$in_id,])
truth <- triceps[-x$in_id,]$triceps
rmse <- mlr3measures::rmse(truth = truth,response = pred)
mae <- mlr3measures::mae(truth = truth,response = pred)
metric <- c(rmse,mae)
names(metric) <- c("rmse","mae")
return(metric)
}
)
metric_poly3## # A tibble: 10 x 2
## rmse mae
## <dbl> <dbl>
## 1 3.49 2.60
## 2 4.48 2.99
## 3 4.21 2.85
## 4 4.02 2.75
## 5 3.03 2.09
## 6 3.63 2.59
## 7 3.53 2.52
## 8 4.54 2.91
## 9 3.27 2.33
## 10 4.27 2.68
# menghitung rata-rata untuk 10 folds
mean_metric_poly3 <- colMeans(metric_poly3)
mean_metric_poly3## rmse mae
## 3.845976 2.632125
#Fungsi Tangga
set.seed(123)
cross_val <- vfold_cv(triceps,v=10,strata = "triceps")
breaks <- 3:10 #titik cut nya
best_tangga <- map_dfr(breaks, function(i){
metric_tangga <- map_dfr(cross_val$splits,
function(x){
training <- triceps[x$in_id,]
training$age <- cut(training$age,i)
mod <- lm(triceps ~ age,data=training)
labs_x <- levels(mod$model[,2])
labs_x_breaks <- cbind(lower = as.numeric( sub("\\((.+),.*", "\\1", labs_x) ),
upper = as.numeric( sub("[^,]*,([^]]*)\\]", "\\1", labs_x) ))
testing <- triceps[-x$in_id,]
age_new <- cut(testing$age,c(labs_x_breaks[1,1],labs_x_breaks[,2]))
pred <- predict(mod,newdata=list(age=age_new))
truth <- testing$triceps
data_eval <- na.omit(data.frame(truth,pred))
rmse <- mlr3measures::rmse(truth = data_eval$truth,response = data_eval$pred)
mae <- mlr3measures::mae(truth = data_eval$truth,response = data_eval$pred)
metric <- c(rmse,mae)
names(metric) <- c("rmse","mae")
return(metric)
}
)
metric_tangga
# menghitung rata-rata untuk 10 folds
mean_metric_tangga <- colMeans(metric_tangga)
mean_metric_tangga
}
)
best_tangga <- cbind(breaks=breaks,best_tangga)
# menampilkan hasil all breaks
best_tangga## breaks rmse mae
## 1 3 3.835357 2.618775
## 2 4 3.882932 2.651911
## 3 5 3.917840 2.724368
## 4 6 3.836068 2.622939
## 5 7 3.789715 2.555062
## 6 8 3.812789 2.555563
## 7 9 3.781720 2.518706
## 8 10 3.795877 2.529479
#berdasarkan rmse terkecil
best_tangga %>% slice_min(rmse)## breaks rmse mae
## 1 9 3.78172 2.518706
#berdasarkan mae terkecil
best_tangga %>% slice_min(mae)## breaks rmse mae
## 1 9 3.78172 2.518706
#Perbandingan Model
nilai_metric <- rbind(mean_metric_linear,
mean_metric_poly2,
mean_metric_poly3,
best_tangga %>% select(-1) %>% slice_min(mae))
nama_model <- c("Linear","Poly2","Poly3","Tangga (breaks=9)")
data.frame(nama_model,nilai_metric)## nama_model rmse mae
## 1 Linear 3.973249 2.833886
## 2 Poly2 3.977777 2.851787
## 3 Poly3 3.845976 2.632125
## 4 Tangga (breaks=9) 3.781720 2.518706