Nonlinear Regression Part 1

#install.packages("MultiKink")
library(MultiKink)
library(MatrixModels)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.2 --
## v ggplot2 3.3.6      v purrr   0.3.4 
## v tibble  3.1.8      v dplyr   1.0.10
## v tidyr   1.2.1      v stringr 1.4.1 
## v readr   2.1.2      v forcats 0.5.2 
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(ggplot2)
library(dplyr)
library(purrr)
library(rsample)
library(mlr3measures)
## In order to avoid name clashes, do not attach 'mlr3measures'. Instead, only load the namespace with `requireNamespace("mlrmeasures")` and access the measures directly via `::`, e.g. `mlr3measures::auc()`.
set.seed(123)
data.x <- rnorm(1000,1,1)
err <- rnorm(1000)
y <- 5+2*data.x+3*data.x^2+err
plot(data.x,y,xlim=c(-2,5), ylim=c(-10,70))

#Regresi Linier

lin.mod <-lm( y~data.x)
plot( data.x,y,xlim=c( -2,5), ylim=c( -10,70))
lines(data.x,lin.mod$fitted.values,col="red")

summary(lin.mod)
## 
## Call:
## lm(formula = y ~ data.x)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.686 -2.574 -1.428  1.195 27.185 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   4.6056     0.1902   24.22   <2e-16 ***
## data.x        8.3790     0.1340   62.54   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.2 on 998 degrees of freedom
## Multiple R-squared:  0.7967, Adjusted R-squared:  0.7965 
## F-statistic:  3911 on 1 and 998 DF,  p-value: < 2.2e-16

#Polynomial

pol.mod <- lm( y~data.x+I(data.x^2)) #ordo 2
ix <- sort( data.x,index.return=T)$ix #ix=observasi keberapa
plot(data.x,y,xlim=c(-2,5), ylim=c(-10,70))
lines(data.x[ix], pol.mod$fitted.values[ix],col="blue", cex=2)

summary(pol.mod)
## 
## Call:
## lm(formula = y ~ data.x + I(data.x^2))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0319 -0.6942  0.0049  0.7116  3.2855 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.95193    0.04568  108.41   <2e-16 ***
## data.x       2.10732    0.05861   35.95   <2e-16 ***
## I(data.x^2)  2.99081    0.02338  127.93   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.007 on 997 degrees of freedom
## Multiple R-squared:  0.9883, Adjusted R-squared:  0.9883 
## F-statistic: 4.221e+04 on 2 and 997 DF,  p-value: < 2.2e-16

#Fungsi Tangga

#regresi fungsi tangga
range( data.x) #nilai min dan max
## [1] -1.809775  4.241040
c1 <- as.factor(ifelse(data.x<=0,1,0))
c2 <- as.factor(ifelse(data.x<=2 & data.x>0,1,0))
c3 <- as.factor(ifelse(data.x>2,1,0))
data.frame(y,c1,c2,c3)
##              y c1 c2 c3
## 1     5.462795  0  1  0
## 2     7.277570  0  1  0
## 3    29.740401  0  0  1
## 4    10.446806  0  1  0
## 5     8.535105  0  1  0
## 6    33.585437  0  0  1
## 7    14.574387  0  1  0
## 8     7.096857  1  0  0
## 9     6.605676  0  1  0
## 10    6.583589  0  1  0
## 11   27.085174  0  0  1
## 12   16.099135  0  1  0
## 13   12.469313  0  1  0
## 14   11.391246  0  1  0
## 15    6.268902  0  1  0
## 16   34.061532  0  0  1
## 17   14.953912  0  1  0
## 18    4.607911  1  0  0
## 19   17.372137  0  1  0
## 20    8.637511  0  1  0
## 21    4.714063  1  0  0
## 22    8.235813  0  1  0
## 23    6.348592  1  0  0
## 24    6.661114  0  1  0
## 25    4.523213  0  1  0
## 26    5.269813  1  0  0
## 27   20.461505  0  1  0
## 28   12.712831  0  1  0
## 29    5.200923  1  0  0
## 30   25.467896  0  0  1
## 31   12.760394  0  1  0
## 32    8.200761  0  1  0
## 33   18.610306  0  1  0
## 34   18.880405  0  1  0
## 35   19.533239  0  1  0
## 36   15.794905  0  1  0
## 37   15.618734  0  1  0
## 38    9.944538  0  1  0
## 39    7.888050  0  1  0
## 40    9.212695  0  1  0
## 41    4.867850  0  1  0
## 42    9.072481  0  1  0
## 43    4.591582  1  0  0
## 44   41.203925  0  0  1
## 45   24.505304  0  0  1
## 46    3.778849  1  0  0
## 47    5.950419  0  1  0
## 48    6.425578  0  1  0
## 49   19.816515  0  1  0
## 50    9.409663  0  1  0
## 51   12.550493  0  1  0
## 52    9.584224  0  1  0
## 53   10.133043  0  1  0
## 54   25.616355  0  0  1
## 55    9.504660  0  1  0
## 56   29.615519  0  0  1
## 57    3.999430  1  0  0
## 58   15.756783  0  1  0
## 59   11.753185  0  1  0
## 60   12.425156  0  1  0
## 61   14.951428  0  1  0
## 62    6.125411  0  1  0
## 63    8.783559  0  1  0
## 64    6.000432  1  0  0
## 65    4.709396  1  0  0
## 66   11.728691  0  1  0
## 67   13.099209  0  1  0
## 68   10.890249  0  1  0
## 69   19.858745  0  1  0
## 70   40.788322  0  0  1
## 71    7.330223  0  1  0
## 72    7.151487  1  0  0
## 73   20.054896  0  0  1
## 74    5.252889  0  1  0
## 75    6.258887  0  1  0
## 76   20.909026  0  0  1
## 77    8.479333  0  1  0
## 78    4.370375  1  0  0
## 79   11.443481  0  1  0
## 80    8.216232  0  1  0
## 81   11.951257  0  1  0
## 82   13.860188  0  1  0
## 83    7.677520  0  1  0
## 84   14.708813  0  1  0
## 85    9.041742  0  1  0
## 86   11.960870  0  1  0
## 87   21.492358  0  0  1
## 88   14.967942  0  1  0
## 89    7.258541  0  1  0
## 90   21.401366  0  0  1
## 91   22.679085  0  1  0
## 92   12.911986  0  1  0
## 93   12.653644  0  1  0
## 94    7.176799  0  1  0
## 95   25.808377  0  0  1
## 96    6.723145  0  1  0
## 97   42.291071  0  0  1
## 98   30.348194  0  0  1
## 99    8.765160  0  1  0
## 100   4.704369  1  0  0
## 101   6.746772  0  1  0
## 102  13.053660  0  1  0
## 103   7.272467  0  1  0
## 104   6.181229  0  1  0
## 105   5.264063  0  1  0
## 106   9.371898  0  1  0
## 107   4.583450  0  1  0
## 108   5.086486  1  0  0
## 109   6.071908  0  1  0
## 110  20.046864  0  1  0
## 111   5.765368  0  1  0
## 112  16.929741  0  1  0
## 113   7.334061  1  0  0
## 114   8.648786  0  1  0
## 115  16.022273  0  1  0
## 116  13.506457  0  1  0
## 117  10.808718  0  1  0
## 118   5.652218  0  1  0
## 119   6.943665  0  1  0
## 120   2.948031  1  0  0
## 121  10.339500  0  1  0
## 122   3.676484  0  1  0
## 123   8.192794  0  1  0
## 124   7.957309  0  1  0
## 125  34.425706  0  0  1
## 126   9.243561  0  1  0
## 127  11.999276  0  1  0
## 128  10.198171  0  1  0
## 129   5.380517  0  1  0
## 130   7.876365  0  1  0
## 131  28.306891  0  0  1
## 132  14.127437  0  1  0
## 133  10.803489  0  1  0
## 134   6.173165  0  1  0
## 135   5.198511  1  0  0
## 136  22.197055  0  0  1
## 137   3.947298  1  0  0
## 138  18.861197  0  1  0
## 139  37.786003  0  0  1
## 140   4.546445  1  0  0
## 141  16.732842  0  1  0
## 142   7.779624  0  1  0
## 143   4.906995  1  0  0
## 144   4.862217  1  0  0
## 145   5.172499  1  0  0
## 146   5.851654  0  1  0
## 147   3.869247  1  0  0
## 148  18.120100  0  1  0
## 149  39.483617  0  0  1
## 150   4.976144  1  0  0
## 151  18.106538  0  1  0
## 152  16.968766  0  1  0
## 153  13.579758  0  1  0
## 154   5.156562  1  0  0
## 155  10.486969  0  1  0
## 156   8.110162  0  1  0
## 157  15.123242  0  1  0
## 158   7.714917  0  1  0
## 159  19.493626  0  1  0
## 160   6.588392  0  1  0
## 161  22.256569  0  0  1
## 162   4.575780  1  0  0
## 163   4.616771  1  0  0
## 164  67.326117  0  0  1
## 165   6.535937  0  1  0
## 166  10.633951  0  1  0
## 167  16.657055  0  1  0
## 168   7.593526  0  1  0
## 169  13.647619  0  1  0
## 170  14.842523  0  1  0
## 171   8.801277  0  1  0
## 172  11.876774  0  1  0
## 173   8.773773  0  1  0
## 174  40.785319  0  0  1
## 175   5.618035  0  1  0
## 176   5.604161  1  0  0
## 177   9.730732  0  1  0
## 178  12.762943  0  1  0
## 179  12.285187  0  1  0
## 180   6.185752  0  1  0
## 181   5.010412  1  0  0
## 182  24.186070  0  0  1
## 183   7.525994  0  1  0
## 184   4.855309  0  1  0
## 185   8.884178  0  1  0
## 186   9.707716  0  1  0
## 187  21.752630  0  0  1
## 188  10.392403  0  1  0
## 189  19.177983  0  1  0
## 190   4.554618  0  1  0
## 191  11.533685  0  1  0
## 192   9.783480  0  1  0
## 193  12.977096  0  1  0
## 194   5.398715  0  1  0
## 195   3.804581  1  0  0
## 196  38.109748  0  0  1
## 197  15.235449  0  1  0
## 198   6.139686  1  0  0
## 199   5.424761  0  1  0
## 200   5.105160  1  0  0
## 201  42.714634  0  0  1
## 202  24.909077  0  0  1
## 203   8.941270  0  1  0
## 204  14.482802  0  1  0
## 205   7.830553  0  1  0
## 206   7.967120  0  1  0
## 207   4.568418  0  1  0
## 208   7.411766  0  1  0
## 209  30.894213  0  0  1
## 210   9.870886  0  1  0
## 211  11.198458  0  1  0
## 212  11.700454  0  1  0
## 213  24.684900  0  0  1
## 214   5.440024  0  1  0
## 215   4.879017  0  1  0
## 216  32.655247  0  0  1
## 217   4.880445  0  1  0
## 218   4.296019  0  1  0
## 219   3.532991  1  0  0
## 220   3.084668  1  0  0
## 221   6.816132  0  1  0
## 222  15.096678  0  1  0
## 223  20.409527  0  0  1
## 224  16.525182  0  1  0
## 225   7.096846  0  1  0
## 226  11.345495  0  1  0
## 227   4.748845  0  1  0
## 228   6.966750  0  1  0
## 229  19.823386  0  1  0
## 230   5.331896  1  0  0
## 231  36.259350  0  0  1
## 232  11.255584  0  1  0
## 233  11.690121  0  1  0
## 234   3.903150  0  1  0
## 235   6.190801  0  1  0
## 236   2.733021  1  0  0
## 237   8.326472  0  1  0
## 238  13.456271  0  1  0
## 239  13.591784  0  1  0
## 240   6.589602  0  1  0
## 241   4.830693  0  1  0
## 242   7.545130  0  1  0
## 243  30.107401  0  0  1
## 244   3.997806  1  0  0
## 245   8.011361  0  1  0
## 246  36.726614  0  0  1
## 247   9.405837  0  1  0
## 248   5.217550  1  0  0
## 249   7.412284  0  1  0
## 250  14.977777  0  1  0
## 251   8.470111  0  1  0
## 252   7.075010  0  1  0
## 253   8.037120  0  1  0
## 254  11.134627  0  1  0
## 255  31.745084  0  0  1
## 256   8.312751  0  1  0
## 257  21.045596  0  0  1
## 258  16.831531  0  1  0
## 259   9.009933  0  1  0
## 260   4.860155  1  0  0
## 261   7.387029  0  1  0
## 262   7.554251  0  1  0
## 263  10.121236  0  1  0
## 264  25.160595  0  0  1
## 265  44.192864  0  0  1
## 266  30.628688  0  0  1
## 267   9.414000  0  1  0
## 268   6.636954  1  0  0
## 269   7.335574  0  1  0
## 270  11.863199  0  1  0
## 271  19.785247  0  1  0
## 272  21.091687  0  1  0
## 273  17.294014  0  1  0
## 274   4.398294  1  0  0
## 275  18.853787  0  1  0
## 276   7.255178  0  1  0
## 277  11.538978  0  1  0
## 278  11.556308  0  1  0
## 279  13.865997  0  1  0
## 280  10.128850  0  1  0
## 281   4.517300  1  0  0
## 282  17.380910  0  1  0
## 283  13.466496  0  1  0
## 284   5.772764  0  1  0
## 285   9.622199  0  1  0
## 286  11.053721  0  1  0
## 287  11.649421  0  1  0
## 288  30.003028  0  0  1
## 289   6.400008  0  1  0
## 290  11.074892  0  1  0
## 291  24.095929  0  0  1
## 292  23.540580  0  0  1
## 293  23.058531  0  0  1
## 294   7.873849  0  1  0
## 295  38.132695  0  0  1
## 296  10.662486  0  1  0
## 297  35.715048  0  0  1
## 298   3.797015  1  0  0
## 299  10.117471  0  1  0
## 300  25.594624  0  0  1
## 301   5.063051  0  1  0
## 302   5.356504  0  1  0
## 303   3.986484  0  1  0
## 304   5.257599  1  0  0
## 305   7.500849  0  1  0
## 306  13.626820  0  1  0
## 307   4.837638  1  0  0
## 308  11.937886  0  1  0
## 309  23.537438  0  0  1
## 310  38.755331  0  0  1
## 311  26.831209  0  0  1
## 312  17.268797  0  1  0
## 313   5.847634  1  0  0
## 314   5.523709  0  1  0
## 315   7.076910  0  1  0
## 316  17.551751  0  1  0
## 317   8.509016  0  1  0
## 318   2.980435  1  0  0
## 319  33.252625  0  0  1
## 320  20.143390  0  1  0
## 321  11.484922  0  1  0
## 322  22.202156  0  0  1
## 323   6.568965  1  0  0
## 324  19.986984  0  1  0
## 325   6.844493  0  1  0
## 326  17.722295  0  1  0
## 327  10.749083  0  1  0
## 328  15.563799  0  1  0
## 329  25.683767  0  0  1
## 330   8.331359  0  1  0
## 331  20.510168  0  0  1
## 332   5.352064  1  0  0
## 333   5.498587  0  1  0
## 334  28.863598  0  0  1
## 335  13.333809  0  1  0
## 336   4.353406  1  0  0
## 337   5.507125  1  0  0
## 338   7.071198  0  1  0
## 339  18.966387  0  1  0
## 340   8.777511  0  1  0
## 341  15.943736  0  1  0
## 342  21.891083  0  1  0
## 343  31.163651  0  0  1
## 344   9.674450  0  1  0
## 345   8.072597  0  1  0
## 346   4.389927  1  0  0
## 347   9.658034  0  1  0
## 348   6.814183  0  1  0
## 349   4.191003  0  1  0
## 350   8.961891  0  1  0
## 351  21.063447  0  0  1
## 352   4.537590  1  0  0
## 353   6.338861  0  1  0
## 354  11.859023  0  1  0
## 355   6.150875  0  1  0
## 356  15.011270  0  1  0
## 357  13.795683  0  1  0
## 358   8.243158  0  1  0
## 359   7.746359  1  0  0
## 360  50.817345  0  0  1
## 361  10.384186  0  1  0
## 362  16.591713  0  1  0
## 363  13.555363  0  1  0
## 364  22.115333  0  0  1
## 365  17.378885  0  1  0
## 366   8.282582  0  1  0
## 367  14.759636  0  1  0
## 368   5.994219  0  1  0
## 369  19.522131  0  1  0
## 370   7.426477  0  1  0
## 371  46.365162  0  0  1
## 372   3.650111  1  0  0
## 373   8.229380  0  1  0
## 374  17.226575  0  1  0
## 375  13.922870  0  1  0
## 376   6.955580  0  1  0
## 377   3.744275  0  1  0
## 378  10.666555  0  1  0
## 379   8.703355  0  1  0
## 380   5.913734  1  0  0
## 381  10.726303  0  1  0
## 382  12.052290  0  1  0
## 383  11.931864  0  1  0
## 384   5.456292  1  0  0
## 385  15.128531  0  1  0
## 386  24.761266  0  0  1
## 387  14.125530  0  1  0
## 388   4.896440  1  0  0
## 389   7.808873  0  1  0
## 390  11.940706  0  1  0
## 391   5.580039  0  1  0
## 392   5.631499  1  0  0
## 393  20.476945  0  1  0
## 394   6.707351  0  1  0
## 395   7.186109  0  1  0
## 396  27.593953  0  0  1
## 397   6.056694  0  1  0
## 398  20.062087  0  1  0
## 399   4.850442  1  0  0
## 400   6.974652  0  1  0
## 401   8.341665  0  1  0
## 402   4.082724  1  0  0
## 403   6.845578  0  1  0
## 404   9.340102  0  1  0
## 405  16.942682  0  1  0
## 406   6.263485  1  0  0
## 407   8.147285  0  1  0
## 408  19.132376  0  1  0
## 409   4.858893  0  1  0
## 410  11.692644  0  1  0
## 411  14.729763  0  1  0
## 412  12.936476  0  1  0
## 413  15.337092  0  1  0
## 414   9.869688  0  1  0
## 415   7.511363  0  1  0
## 416  10.077324  1  0  0
## 417   9.790871  0  1  0
## 418  13.881354  0  1  0
## 419  16.068693  0  1  0
## 420   7.131005  0  1  0
## 421  33.585706  0  0  1
## 422  13.577889  0  1  0
## 423  11.350953  0  1  0
## 424  25.702874  0  0  1
## 425   5.206674  0  1  0
## 426   8.586137  0  1  0
## 427  46.418966  0  0  1
## 428  10.937248  0  1  0
## 429  30.974068  0  0  1
## 430   4.420221  1  0  0
## 431   9.369194  0  1  0
## 432  11.872389  0  1  0
## 433  13.148744  0  1  0
## 434   5.382389  1  0  0
## 435   7.459858  0  1  0
## 436   5.231518  1  0  0
## 437  15.057047  0  1  0
## 438  22.868216  0  0  1
## 439   6.597895  1  0  0
## 440  23.771426  0  0  1
## 441   4.685372  1  0  0
## 442  15.631651  0  1  0
## 443  15.950313  0  1  0
## 444   9.078852  0  1  0
## 445   6.428762  0  1  0
## 446  10.225043  0  1  0
## 447  12.347213  0  1  0
## 448  17.414508  0  1  0
## 449   6.768840  1  0  0
## 450   4.907435  1  0  0
## 451  29.431943  0  0  1
## 452  22.233002  0  0  1
## 453  14.900437  0  1  0
## 454  18.590251  0  1  0
## 455  19.360310  0  1  0
## 456  10.464246  1  0  0
## 457  23.449156  0  0  1
## 458   8.195090  0  1  0
## 459  12.767138  0  1  0
## 460   8.321239  0  1  0
## 461  18.388464  0  1  0
## 462   8.306080  0  1  0
## 463  15.454834  0  1  0
## 464   7.966675  0  1  0
## 465   5.263899  1  0  0
## 466  23.870622  0  0  1
## 467  17.497133  0  1  0
## 468  33.400703  0  0  1
## 469  10.705598  0  1  0
## 470  21.966807  0  0  1
## 471  37.220035  0  0  1
## 472   6.666714  0  1  0
## 473   3.699958  1  0  0
## 474   8.112444  0  1  0
## 475   6.626978  0  1  0
## 476   9.593922  0  1  0
## 477  33.596970  0  0  1
## 478   7.133339  0  1  0
## 479  11.549743  0  1  0
## 480   8.221184  0  1  0
## 481  11.485930  0  1  0
## 482  13.470612  0  1  0
## 483  26.359564  0  0  1
## 484  12.198447  0  1  0
## 485  16.455670  0  1  0
## 486  18.780438  0  1  0
## 487  19.241531  0  1  0
## 488   6.395395  0  1  0
## 489  33.169742  0  0  1
## 490   8.357165  0  1  0
## 491   9.955305  0  1  0
## 492  26.038146  0  0  1
## 493  24.590395  0  0  1
## 494   7.128428  1  0  0
## 495   4.208890  0  1  0
## 496   4.882983  1  0  0
## 497  12.446554  0  1  0
## 498  12.419002  0  1  0
## 499  14.399768  0  1  0
## 500  15.168767  0  1  0
## 501   5.450696  0  1  0
## 502   4.705465  0  1  0
## 503  20.475045  0  0  1
## 504  18.327838  0  1  0
## 505   5.879774  1  0  0
## 506  11.393193  0  1  0
## 507   5.606699  0  1  0
## 508   5.423240  1  0  0
## 509  12.293044  0  1  0
## 510  10.289889  0  1  0
## 511   9.011239  0  1  0
## 512  10.311531  0  1  0
## 513  20.157266  0  1  0
## 514  12.900735  0  1  0
## 515   5.913385  0  1  0
## 516   6.277639  0  1  0
## 517   8.721803  0  1  0
## 518  13.450783  0  1  0
## 519   4.808072  1  0  0
## 520   8.282762  0  1  0
## 521  20.656576  0  1  0
## 522   8.885528  0  1  0
## 523   5.284992  0  1  0
## 524   7.704939  0  1  0
## 525  22.636360  0  0  1
## 526  15.515492  0  1  0
## 527  26.013931  0  0  1
## 528   9.812830  0  1  0
## 529  13.587559  0  1  0
## 530   7.099490  0  1  0
## 531  17.704407  0  1  0
## 532   7.144467  0  1  0
## 533   4.675742  1  0  0
## 534  10.765533  0  1  0
## 535  37.340129  0  0  1
## 536  19.320764  0  1  0
## 537  23.211615  0  0  1
## 538  13.420939  0  1  0
## 539   6.459504  0  1  0
## 540   9.234055  0  1  0
## 541   9.149389  0  1  0
## 542   7.188601  0  1  0
## 543  17.044722  0  1  0
## 544   6.116793  1  0  0
## 545  19.347234  0  1  0
## 546  20.731350  0  1  0
## 547   4.659185  1  0  0
## 548  16.956709  0  1  0
## 549  45.613729  0  0  1
## 550   6.361351  0  1  0
## 551  18.879029  0  1  0
## 552   4.819559  0  1  0
## 553  21.550838  0  0  1
## 554  13.133994  0  1  0
## 555  32.315955  0  0  1
## 556   3.415289  1  0  0
## 557  10.021890  0  1  0
## 558   5.505004  0  1  0
## 559   7.487548  0  1  0
## 560   6.677891  0  1  0
## 561   4.729113  0  1  0
## 562  16.628018  0  1  0
## 563   4.886373  1  0  0
## 564  29.015440  0  0  1
## 565   4.207979  1  0  0
## 566   9.688063  0  1  0
## 567  16.030899  0  1  0
## 568  15.964729  0  1  0
## 569   7.620112  0  1  0
## 570  10.724213  0  1  0
## 571  21.788108  0  1  0
## 572   4.013985  1  0  0
## 573   4.830025  0  1  0
## 574  12.251576  0  1  0
## 575   5.450246  0  1  0
## 576  27.410393  0  0  1
## 577  16.938213  0  1  0
## 578  10.800130  0  1  0
## 579   4.714590  1  0  0
## 580   9.700685  0  1  0
## 581   6.945611  0  1  0
## 582  10.064509  0  1  0
## 583   3.309588  1  0  0
## 584  15.175543  0  1  0
## 585   4.134028  1  0  0
## 586   8.626064  0  1  0
## 587  12.747173  0  1  0
## 588   5.050223  0  1  0
## 589  17.452934  0  1  0
## 590   5.335798  1  0  0
## 591   9.061407  1  0  0
## 592  14.494742  0  1  0
## 593  18.392027  0  1  0
## 594   6.821733  0  1  0
## 595  15.005226  0  1  0
## 596   4.891062  1  0  0
## 597   8.702805  0  1  0
## 598   7.749037  1  0  0
## 599  21.386322  0  0  1
## 600  36.095312  0  0  1
## 601  21.763582  0  0  1
## 602  10.439981  0  1  0
## 603   9.282692  0  1  0
## 604   4.172978  1  0  0
## 605  16.486830  0  1  0
## 606   8.237905  0  1  0
## 607   8.518736  0  1  0
## 608   5.674946  1  0  0
## 609   9.547045  0  1  0
## 610   6.285191  0  1  0
## 611   8.440918  0  1  0
## 612   5.609726  1  0  0
## 613  32.519983  0  0  1
## 614   9.290219  0  1  0
## 615  21.533147  0  0  1
## 616   7.892086  1  0  0
## 617   6.984764  0  1  0
## 618   6.864326  0  1  0
## 619   5.735158  1  0  0
## 620  29.644006  0  0  1
## 621   4.139186  1  0  0
## 622  16.141757  0  1  0
## 623  19.657539  0  1  0
## 624  12.941352  0  1  0
## 625   4.958492  0  1  0
## 626  20.148748  0  1  0
## 627  11.900613  0  1  0
## 628   6.561622  1  0  0
## 629   4.364174  1  0  0
## 630  40.610524  0  0  1
## 631   3.858260  0  1  0
## 632   4.977611  1  0  0
## 633  13.827162  0  1  0
## 634  13.883933  0  1  0
## 635   4.503474  1  0  0
## 636   5.391213  1  0  0
## 637  10.479259  0  1  0
## 638  24.126115  0  0  1
## 639  15.404932  0  1  0
## 640   7.213329  0  1  0
## 641   4.185660  0  1  0
## 642  11.913351  0  1  0
## 643  12.949685  0  1  0
## 644  17.677433  0  1  0
## 645   8.412603  0  1  0
## 646  19.050442  0  1  0
## 647   3.542820  0  1  0
## 648   6.507724  0  1  0
## 649  18.525491  0  1  0
## 650  20.569336  0  1  0
## 651   3.602756  1  0  0
## 652  10.711805  0  1  0
## 653  17.392307  0  1  0
## 654   5.351548  1  0  0
## 655  13.716749  0  1  0
## 656   3.886307  0  1  0
## 657  20.458225  0  0  1
## 658  15.212273  0  1  0
## 659  18.814816  0  1  0
## 660   9.069534  0  1  0
## 661  20.170055  0  1  0
## 662  26.767035  0  0  1
## 663  37.898157  0  0  1
## 664   8.122003  0  1  0
## 665   6.515629  1  0  0
## 666   9.806956  0  1  0
## 667  12.815147  0  1  0
## 668   9.857808  0  1  0
## 669  15.950255  0  1  0
## 670  22.754046  0  0  1
## 671   6.145647  0  1  0
## 672   8.919251  0  1  0
## 673  13.621633  0  1  0
## 674   5.839106  0  1  0
## 675  11.678508  0  1  0
## 676   7.232330  1  0  0
## 677   5.681579  1  0  0
## 678   4.157357  1  0  0
## 679   4.887243  0  1  0
## 680   7.273253  0  1  0
## 681  13.849739  0  1  0
## 682  21.580116  0  1  0
## 683   5.429490  0  1  0
## 684   6.267387  0  1  0
## 685   4.113081  1  0  0
## 686   7.824293  0  1  0
## 687   7.441997  0  1  0
## 688  12.108023  0  1  0
## 689   6.396193  0  1  0
## 690   6.468734  1  0  0
## 691  10.176529  0  1  0
## 692  21.974430  0  0  1
## 693  22.541126  0  0  1
## 694   7.320229  0  1  0
## 695   4.370725  1  0  0
## 696  48.296368  0  0  1
## 697   8.252832  0  1  0
## 698   8.950297  0  1  0
## 699  13.982486  0  1  0
## 700   4.914016  1  0  0
## 701   5.572596  0  1  0
## 702   4.325553  1  0  0
## 703   2.848523  0  1  0
## 704  12.861827  0  1  0
## 705   6.460044  1  0  0
## 706  14.663018  0  1  0
## 707  12.397805  0  1  0
## 708   6.594370  0  1  0
## 709  12.962559  0  1  0
## 710  18.940127  0  1  0
## 711  20.794785  0  0  1
## 712  11.010395  0  1  0
## 713   8.143749  0  1  0
## 714  10.082761  0  1  0
## 715  27.906406  0  0  1
## 716  22.394225  0  0  1
## 717  18.384475  0  1  0
## 718   6.957571  0  1  0
## 719  15.026519  0  1  0
## 720  13.803765  0  1  0
## 721   5.181081  1  0  0
## 722   5.344306  1  0  0
## 723  15.995307  0  1  0
## 724   3.647867  1  0  0
## 725  10.267204  0  1  0
## 726  10.096215  0  1  0
## 727  14.046211  0  1  0
## 728  10.546660  0  1  0
## 729   4.669715  0  1  0
## 730  20.916869  0  1  0
## 731  34.576100  0  0  1
## 732  17.863535  0  1  0
## 733   6.217805  1  0  0
## 734  27.972595  0  0  1
## 735   8.571447  0  1  0
## 736  14.973120  0  1  0
## 737  16.960653  0  1  0
## 738   8.999047  0  1  0
## 739   9.194204  0  1  0
## 740  21.577027  0  0  1
## 741  17.151934  0  1  0
## 742  20.308303  0  1  0
## 743  45.959817  0  0  1
## 744  18.522512  0  1  0
## 745  12.661739  0  1  0
## 746   6.061034  1  0  0
## 747  52.024767  0  0  1
## 748   6.477534  0  1  0
## 749  47.244747  0  0  1
## 750  13.710901  0  1  0
## 751  28.706239  0  0  1
## 752  10.040661  0  1  0
## 753  14.743203  0  1  0
## 754  10.728319  0  1  0
## 755   9.076150  0  1  0
## 756  10.604476  0  1  0
## 757  21.614643  0  0  1
## 758   8.702091  0  1  0
## 759   5.498747  1  0  0
## 760   9.116402  0  1  0
## 761  14.121876  0  1  0
## 762  14.418550  0  1  0
## 763  16.029657  0  1  0
## 764   5.018217  1  0  0
## 765  15.722904  0  1  0
## 766  19.336781  0  1  0
## 767  25.272495  0  0  1
## 768   9.157186  0  1  0
## 769   8.786297  0  1  0
## 770  28.532962  0  0  1
## 771   4.259271  1  0  0
## 772   7.012037  0  1  0
## 773  16.227267  0  1  0
## 774   5.392125  1  0  0
## 775  10.427121  0  1  0
## 776  37.025491  0  0  1
## 777  10.508067  0  1  0
## 778   7.971406  0  1  0
## 779  14.458053  0  1  0
## 780   7.851277  0  1  0
## 781  18.748623  0  1  0
## 782  19.185627  0  1  0
## 783  10.298566  0  1  0
## 784   3.808920  1  0  0
## 785   4.867499  1  0  0
## 786   7.417796  0  1  0
## 787  18.795697  0  1  0
## 788   6.871811  1  0  0
## 789   4.493198  1  0  0
## 790   6.106838  0  1  0
## 791  14.239051  0  1  0
## 792   4.127276  0  1  0
## 793  21.018778  0  1  0
## 794  11.965558  0  1  0
## 795   8.886755  0  1  0
## 796  18.713896  0  1  0
## 797  13.681074  0  1  0
## 798   6.818669  0  1  0
## 799  12.459099  0  1  0
## 800  15.406763  0  1  0
## 801  11.941716  0  1  0
## 802   5.380282  0  1  0
## 803  18.978406  0  1  0
## 804  24.468023  0  0  1
## 805  14.026633  0  1  0
## 806  11.534617  0  1  0
## 807   9.793748  0  1  0
## 808  41.062837  0  0  1
## 809  12.487628  0  1  0
## 810   7.404273  0  1  0
## 811   9.095546  1  0  0
## 812   4.292513  1  0  0
## 813   9.731393  0  1  0
## 814  11.432043  0  1  0
## 815  11.783339  0  1  0
## 816  18.377563  0  1  0
## 817   8.192961  0  1  0
## 818  25.236966  0  0  1
## 819   5.384655  0  1  0
## 820   5.145951  1  0  0
## 821   3.458478  1  0  0
## 822  19.088213  0  1  0
## 823   9.516638  0  1  0
## 824  17.333699  0  1  0
## 825   8.382395  0  1  0
## 826   7.186306  0  1  0
## 827   6.076553  0  1  0
## 828   7.165740  1  0  0
## 829   4.589047  1  0  0
## 830   5.823285  1  0  0
## 831  21.841626  0  0  1
## 832   5.959346  0  1  0
## 833  16.350499  0  1  0
## 834  27.930984  0  0  1
## 835   8.534794  0  1  0
## 836  13.340645  0  1  0
## 837   3.308494  1  0  0
## 838   6.836744  0  1  0
## 839  11.858190  0  1  0
## 840  11.517738  0  1  0
## 841   6.127172  0  1  0
## 842  52.070636  0  0  1
## 843   6.838043  0  1  0
## 844  11.454993  0  1  0
## 845  17.333363  0  1  0
## 846   8.944707  0  1  0
## 847   5.707361  0  1  0
## 848  20.664274  0  0  1
## 849  31.093866  0  0  1
## 850   8.206018  0  1  0
## 851  12.817247  0  1  0
## 852  10.718980  0  1  0
## 853  23.504658  0  0  1
## 854   4.305796  1  0  0
## 855  45.487161  0  0  1
## 856   6.256997  0  1  0
## 857   6.188243  1  0  0
## 858   8.116231  0  1  0
## 859  11.441902  0  1  0
## 860  29.098271  0  0  1
## 861  20.863542  0  1  0
## 862  10.849697  0  1  0
## 863   3.272635  1  0  0
## 864   5.119966  0  1  0
## 865   8.646928  0  1  0
## 866  51.037243  0  0  1
## 867   4.332123  1  0  0
## 868  22.328647  0  0  1
## 869   8.104174  0  1  0
## 870  33.013170  0  0  1
## 871   5.942944  1  0  0
## 872  12.872393  0  1  0
## 873   5.034660  1  0  0
## 874  19.095274  0  1  0
## 875  29.030245  0  0  1
## 876  38.080429  0  0  1
## 877  20.702939  0  1  0
## 878  32.974039  0  0  1
## 879  24.905345  0  0  1
## 880   9.651968  0  1  0
## 881  14.444393  0  1  0
## 882   3.500542  0  1  0
## 883   9.362783  0  1  0
## 884  23.460881  0  0  1
## 885  15.715100  0  1  0
## 886  15.193938  0  1  0
## 887   6.212057  1  0  0
## 888   4.702339  0  1  0
## 889   6.718761  0  1  0
## 890  12.874162  0  1  0
## 891   3.730236  0  1  0
## 892  16.758323  0  1  0
## 893   5.954085  1  0  0
## 894  34.416231  0  0  1
## 895  15.080705  0  1  0
## 896   5.005864  0  1  0
## 897  11.951645  0  1  0
## 898   7.459321  0  1  0
## 899  13.101696  0  1  0
## 900  12.860285  0  1  0
## 901   6.509697  1  0  0
## 902   5.092251  0  1  0
## 903  12.633360  0  1  0
## 904  32.808646  0  0  1
## 905  21.877076  0  0  1
## 906   3.569676  0  1  0
## 907  19.167813  0  1  0
## 908   8.732062  0  1  0
## 909  11.684341  0  1  0
## 910  13.707073  0  1  0
## 911  52.950421  0  0  1
## 912   3.692636  1  0  0
## 913  11.868939  0  1  0
## 914   5.170991  1  0  0
## 915  15.904214  0  1  0
## 916  23.602755  0  0  1
## 917  28.048790  0  0  1
## 918   4.866025  1  0  0
## 919  13.342883  0  1  0
## 920  31.049578  0  0  1
## 921   4.866153  0  1  0
## 922   9.533064  0  1  0
## 923   8.144557  0  1  0
## 924  13.341797  0  1  0
## 925  16.458233  0  1  0
## 926  27.045592  0  0  1
## 927   9.452302  0  1  0
## 928  11.787739  0  1  0
## 929  49.172519  0  0  1
## 930  13.179316  0  1  0
## 931  11.421009  0  1  0
## 932   5.844489  1  0  0
## 933  10.706346  0  1  0
## 934   7.100850  0  1  0
## 935  10.549956  0  1  0
## 936   5.012386  0  1  0
## 937   5.322311  0  1  0
## 938   7.003275  0  1  0
## 939   6.170955  0  1  0
## 940  24.781408  0  0  1
## 941  22.995814  0  0  1
## 942   6.694153  0  1  0
## 943   6.283318  1  0  0
## 944   5.215046  0  1  0
## 945   7.394326  0  1  0
## 946  11.674605  0  1  0
## 947   5.365075  0  1  0
## 948  37.829157  0  0  1
## 949   7.629151  0  1  0
## 950   7.525512  1  0  0
## 951   9.055918  0  1  0
## 952   5.462132  1  0  0
## 953  10.981646  0  1  0
## 954  11.791032  0  1  0
## 955  14.602783  0  1  0
## 956   4.577523  1  0  0
## 957  11.931967  0  1  0
## 958  13.149701  0  1  0
## 959   4.258056  1  0  0
## 960  22.340160  0  1  0
## 961  16.689679  0  1  0
## 962  46.272995  0  0  1
## 963  10.975699  0  1  0
## 964  11.737540  0  1  0
## 965   8.801496  0  1  0
## 966  11.528812  0  1  0
## 967   6.339204  1  0  0
## 968   3.737763  1  0  0
## 969   8.629401  0  1  0
## 970   6.557904  0  1  0
## 971  11.590716  0  1  0
## 972   5.715936  1  0  0
## 973   4.524577  1  0  0
## 974   6.399277  1  0  0
## 975  19.678051  0  1  0
## 976   5.779915  1  0  0
## 977   5.970324  0  1  0
## 978   9.552316  0  1  0
## 979   7.062657  0  1  0
## 980  12.018929  0  1  0
## 981  44.629388  0  0  1
## 982   6.222469  1  0  0
## 983   7.234394  0  1  0
## 984   4.952558  0  1  0
## 985  30.009010  0  0  1
## 986   5.011820  0  1  0
## 987   9.483860  0  1  0
## 988  19.874849  0  1  0
## 989   4.642703  1  0  0
## 990  33.009783  0  0  1
## 991  15.678924  0  1  0
## 992   5.793618  1  0  0
## 993  14.503345  0  1  0
## 994   7.693271  0  1  0
## 995  11.520158  0  1  0
## 996   9.381129  0  1  0
## 997  22.257307  0  0  1
## 998   4.945060  1  0  0
## 999   7.175307  0  1  0
## 1000  7.732277  0  1  0
step.mod <- lm(y~c1+c2+c3)
plot(data.x,y,xlim=c(-2,5), ylim=c(-10,70))
lines(data.x,lin.mod$fitted.values,col="red")
lines(data.x[ix], step.mod$fitted.values[ix],col="green")

summary(step.mod)
## 
## Call:
## lm(formula = y ~ c1 + c2 + c3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.395  -3.534  -0.530   2.527  36.876 
## 
## Coefficients: (1 not defined because of singularities)
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  30.4499     0.4087   74.50   <2e-16 ***
## c11         -25.2395     0.5710  -44.21   <2e-16 ***
## c21         -19.4184     0.4536  -42.81   <2e-16 ***
## c31               NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.121 on 997 degrees of freedom
## Multiple R-squared:  0.698,  Adjusted R-squared:  0.6974 
## F-statistic:  1152 on 2 and 997 DF,  p-value: < 2.2e-16

#Komparasi Model

nilai_AIC <- rbind(AIC(lin.mod),
                   AIC(pol.mod),
                   AIC(step.mod))

nama_model <- c("Linear","Poly (ordo=2)","Tangga (breaks=3)")
data.frame(nama_model,nilai_AIC) #AIS, MRSE, MSE terkecil yang terbaik
##          nama_model nilai_AIC
## 1            Linear  5711.836
## 2     Poly (ordo=2)  2856.470
## 3 Tangga (breaks=3)  6109.609
MSE=function(pred,actual){
  mean((pred-actual)^2)
}
MSE(predict(lin.mod), y)
## [1] 17.60106
MSE(predict(pol.mod), y)
## [1] 1.010649
MSE(predict(step.mod), y)
## [1] 26.14693

#Contoh data TRICEPS Data yang digunakan untuk ilustrasi berasal dari studi antropometri terhadap 892 perempuan di bawah 50 tahun di tiga desa Gambia di Afrika Barat. Data terdiri dari 3 Kolom yaitu Age, Intriceps dan tricepts. Berikut adalah penjelasannya pada masing-masing kolom:

age : umur responden(x) Intriceps : logaritma dari ketebalan lipatan kulit triceps triceps: ketebalan lipatan kulit triceps (y) Lipatan kulit trisep diperlukan untuk menghitung lingkar otot lengan atas. Ketebalannya memberikan informasi tentang cadangan lemak tubuh, sedangkan massa otot yang dihitung memberikan informasi tentang cadangan protein

data("triceps", package="MultiKink")

Jika kita gambarkan dalam bentuk scatterplot

ggplot(triceps,aes(x=age, y=triceps)) +
                 geom_point(alpha=0.55, color="black") + 
                 theme_bw() 

Berdasarkan pola hubungan yang terlihat pada scatterplot, kita akan mencoba untuk mencari model yang bisa merepresentasikan pola hubungan tersebut dengan baik.

#Regresi Linear

mod_linear = lm(triceps~age,data=triceps)
summary(mod_linear)
## 
## Call:
## lm(formula = triceps ~ age, data = triceps)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12.9512  -2.3965  -0.5154   1.5822  25.1233 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.19717    0.21244   29.17   <2e-16 ***
## age          0.21584    0.01014   21.28   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.007 on 890 degrees of freedom
## Multiple R-squared:  0.3372, Adjusted R-squared:  0.3365 
## F-statistic: 452.8 on 1 and 890 DF,  p-value: < 2.2e-16
ringkasan_liniar <- summary(mod_linear)
ringkasan_liniar$r.squared
## [1] 0.3372092
AIC(mod_linear)
## [1] 5011.515
predict(mod_linear) #y duga
##         1         2         3         4         5         6         7         8 
##  8.798074  8.336171  8.364231  8.677202  8.381498  8.759222  8.552014  8.362072 
##         9        10        11        12        13        14        15        16 
##  8.575756  8.355597  8.649143  8.653460  8.573598  8.353439  8.346963  8.772173 
##        17        18        19        20        21        22        23        24 
##  8.627558  8.372864  8.353439  8.806708  8.441934  8.355597  8.573598  8.754906 
##        25        26        27        28        29        30        31        32 
##  8.580073  8.441934  8.657776  8.716054  8.703103  8.364231  8.340488  8.495894 
##        33        34        35        36        37        38        39        40 
##  8.817500  8.465677  8.478627  8.463518  8.830450  8.782965  8.493736  8.700945 
##        41        42        43        44        45        46        47        48 
##  8.422508  8.485103  8.638351  8.435459  8.703103  8.653460  8.450568  8.614608 
##        49        50        51        52        53        54        55        56 
##  8.785123  8.666410  8.383657  8.459201  8.666410  8.657776  8.670727  8.763539 
##        57        58        59        60        61        62        63        64 
##  8.644826  8.830450  8.495894  8.463518  8.467835  8.651301  8.605974  8.782965 
##        65        66        67        68        69        70        71        72 
##  8.599499  8.504528  8.461360  8.731163  8.815341  8.413875  8.316745  8.787282 
##        73        74        75        76        77        78        79        80 
##  8.651301  8.683678  8.789440  8.336171  8.754906  8.828292  8.834767  8.694469 
##        81        82        83        84        85        86        87        88 
##  8.623242  8.642667  8.547697  8.474310  8.452726  8.631875 14.077578  6.840384 
##        89        90        91        92        93        94        95        96 
## 13.043693  7.116662 11.457252 10.406100 14.986275 10.026217 10.065069 10.097445 
##        97        98        99       100       101       102       103       104 
##  9.352789  7.876427 10.108237  7.382148 11.560856 11.850085 11.191766 15.633802 
##       105       106       107       108       109       110       111       112 
##  7.766347 10.123346  7.013057 10.932755 12.139314  6.682819  6.531729  9.149897 
##       113       114       115       116       117       118       119       120 
##  7.133929 14.915047  7.371356  7.248326  8.959956 12.860228 14.120747  8.182923 
##       121       122       123       124       125       126       127       128 
##  6.421649  6.892186  7.403732 12.048660  7.054067 11.297528  8.867143  8.131121 
##       129       130       131       132       133       134       135       136 
## 10.414734 17.151174  7.677852 10.552872  8.107378  9.106728 13.037218 10.395308 
##       137       138       139       140       141       142       143       144 
## 10.473011  6.501511 11.161548 11.068736  6.570581  8.012408 12.609850 13.943756 
##       145       146       147       148       149       150       151       152 
##  6.365530  6.365530  6.510145  7.669218 11.146439  7.496544  7.129612  8.267102 
##       153       154       155       156       157       158       159       160 
##  6.678502 10.453585 10.978082  6.454026 11.105429 12.579632  7.844051  7.310920 
##       161       162       163       164       165       166       167       168 
##  9.283719 13.691221  7.295811  9.303145  7.073493  9.307462  9.244868  6.777789 
##       169       170       171       172       173       174       175       176 
##  7.969239 17.367016 14.122906  8.992332  7.082127  7.338979  9.020392  7.798724 
##       177       178       179       180       181       182       183       184 
##  6.833908  9.326888  8.858510  7.721020 13.995559 17.367016 12.109096  7.772823 
##       185       186       187       188       189       190       191       192 
## 13.693379 14.241619  9.020392  9.119679  9.132630  9.430492  6.404382 13.330764 
##       193       194       195       196       197       198       199       200 
##  9.093778  6.941829  9.074352  8.148388  8.938371  8.269260  9.708929  9.197382 
##       201       202       203       204       205       206       207       208 
##  7.302286  6.954780  9.255660  8.247676  6.546838 12.773890  7.686486  6.831750 
##       209       210       211       212       213       214       215       216 
##  7.246167  9.272927  6.963414  6.516620  9.698136  6.590006  9.756414  9.596691 
##       217       218       219       220       221       222       223       224 
##  9.683028 13.546606  6.980681  9.706770 15.849645 14.409976  9.639859 12.270978 
##       225       226       227       228       229       230       231       232 
## 14.772591  8.118170  7.453376  6.339629  7.347613  9.836276  7.733971 13.848786 
##       233       234       235       236       237       238       239       240 
##  6.715195  9.434809  9.432650 12.914188  6.766997 15.849645  6.421649 14.483362 
##       241       242       243       244       245       246       247       248 
##  8.157022  6.497194 15.849645 10.278753  9.654968 13.652369 11.539272 10.600358 
##       249       250       251       252       253       254       255       256 
## 11.776699  8.085794 10.090970  9.542730  7.936863  7.278544  9.572948  9.156372 
##       257       258       259       260       261       262       263       264 
##  9.566473  8.970748  6.466976 11.373073 14.552432  7.995140  7.060543  7.528921 
##       265       266       267       268       269       270       271       272 
##  9.182273  6.309411 10.026217 10.729863 10.276594  7.166305 13.853103  9.037659 
##       273       274       275       276       277       278       279       280 
##  7.205157  9.777998 12.074561  7.867793 12.473870 14.768274 14.125064 10.738497 
##       281       282       283       284       285       286       287       288 
##  8.893044 14.770433 14.768274 14.768274  9.691661 10.280911 12.184641 13.907063 
##       289       290       291       292       293       294       295       296 
##  6.387115  9.223283 13.963182  8.888728 12.398325  9.711087 13.395516  7.114503 
##       297       298       299       300       301       302       303       304 
## 13.786191 14.392709  7.300128 15.202118  7.207316 14.321480 15.417960  9.175798 
##       305       306       307       308       309       310       311       312 
##  7.153355  9.639859  6.797215  9.182273 15.847486  8.912470 11.081686  6.943988 
##       313       314       315       316       317       318       319       320 
##  7.205157 15.199959 16.065487 16.274854  6.413016 16.495013 15.851803 15.849645 
##       321       322       323       324       325       326       327       328 
##  6.855492 12.180324  6.859809  6.803690  7.518129 14.701363  9.171481  6.883552 
##       329       330       331       332       333       334       335       336 
## 12.031393  6.341788  9.708929 10.529130  7.151197  9.965781 16.935332 16.931015 
##       337       338       339       340       341       342       343       344 
## 16.926698 15.204276 14.511422  6.572739 13.958865  7.129612  6.486402  9.331205 
##       345       346       347       348       349       350       351       352 
##  8.191557  6.438917  7.218108  7.390782 12.402642  7.712387  7.824625  7.077810 
##       353       354       355       356       357       358       359       360 
##  6.898661 15.847486 15.847486  7.518129  9.346314  9.799583 12.180324  8.923263 
##       361       362       363       364       365       366       367       368 
## 15.417960 16.497172 10.900379  8.286528  9.393799 10.166514  6.479927  9.136946 
##       369       370       371       372       373       374       375       376 
## 11.204717  6.788581 13.697696 13.475379 11.955848 16.065487 17.142540  9.534096 
##       377       378       379       380       381       382       383       384 
## 13.978291 11.964481 13.598409 12.173849  6.760522  6.823116  6.883552  6.270560 
##       385       386       387       388       389       390       391       392 
##  7.187890  7.321712 14.552432 15.208593 13.296229 12.098304 12.070244  7.503020 
##       393       394       395       396       397       398       399       400 
##  6.462659  9.911820  6.633175  9.510354  9.415383  7.295811  6.691452 11.355806 
##       401       402       403       404       405       406       407       408 
##  8.157022  6.831750 15.417960  6.704403  7.138246  6.413016 14.856769 10.460060 
##       409       410       411       412       413       414       415       416 
##  6.721670  7.807357 11.770223 12.262344  9.713246 11.563015 11.595391 11.647193 
##       417       418       419       420       421       422       423       424 
##  8.264943  9.244868  9.838434  9.335521  7.556980 13.261694 13.261694  7.779298 
##       425       426       427       428       429       430       431       432 
##  7.921754  6.372006  9.283719  7.015216  6.417332  6.725987  8.163497  7.090761 
##       433       434       435       436       437       438       439       440 
##  9.262135  9.631225  8.847718  7.921754  6.902978 13.661003 14.125064 10.993191 
##       441       442       443       444       445       446       447       448 
## 13.477537  7.608782 13.557398  7.153355  6.555472 13.477537  6.946146  7.418841 
##       449       450       451       452       453       454       455       456 
##  7.684327 13.473220  7.932546  9.713246 13.261694 10.665111 12.219176  8.146230 
##       457       458       459       460       461       462       463       464 
##  7.092919  8.297319  7.675694  6.741096  9.430492  8.023200 13.693379  6.626700 
##       465       466       467       468       469       470       471       472 
## 12.232126  6.477768 12.542939 13.475379 11.431351 12.396166 14.086212  6.857651 
##       473       474       475       476       477       478       479       480 
##  9.883761 16.719489  8.893044  6.926720  7.997299  6.717353  7.572089  7.779298 
##       481       482       483       484       485       486       487       488 
##  9.549205  9.115362  9.976573  7.000107 12.314146  6.972047  6.993632  6.393590 
##       489       490       491       492       493       494       495       496 
## 14.768274  9.035500  7.233217 13.641577  7.060543 14.804968 16.928857  7.440425 
##       497       498       499       500       501       502       503       504 
## 11.398975  8.100903  7.852684 10.902537  8.133279  6.499353 12.044343  8.299478 
##       505       506       507       508       509       510       511       512 
##  6.648284 15.847486 10.801091  6.758363  7.334663  7.513812 11.966640  6.454026 
##       513       514       515       516       517       518       519       520 
##  6.400065 12.609850 10.039167  6.931037  7.967081  6.410857 11.893253  9.581582 
##       521       522       523       524       525       526       527       528 
##  8.154864 15.631643 13.924330 10.293861  6.922404  6.525254  9.044134 13.477537 
##       529       530       531       532       533       534       535       536 
##  7.272068 15.849645  7.341138 12.178165 16.067645 11.496103 12.594741  6.833908 
##       537       538       539       540       541       542       543       544 
##  6.898661 15.199959  6.479927 14.984116  7.397257  7.395098 13.259536  8.910312 
##       545       546       547       548       549       550       551       552 
##  7.032483 10.062910  7.423158 11.720580 16.065487 12.583949 12.374582  6.516620 
##       553       554       555       556       557       558       559       560 
##  9.398116 14.986275 10.065069  7.334663 11.003983 11.601867 15.202118 10.496753 
##       561       562       563       564       565       566       567       568 
##  6.890027  8.979382  7.136088  9.145580  7.287177 10.688853  7.882902  8.215300 
##       569       570       571       572       573       574       575       576 
## 11.476678  7.198682 15.417960  6.786423  6.404382  6.989315 10.116871 10.179465 
##       577       578       579       580       581       582       583       584 
##  8.003774 14.986275  6.443234  7.071335 14.986275 11.155073  6.853334 10.291703 
##       585       586       587       588       589       590       591       592 
##  6.419491  6.417332  8.087953  6.432441  6.384956 15.415801  6.313728 14.094846 
##       593       594       595       596       597       598       599       600 
## 14.584808  6.570581  6.512303  9.970098  9.037659  7.710228  6.441075 12.247235 
##       601       602       603       604       605       606       607       608 
##  7.552663 10.062910  7.589357  7.630367  7.157672  7.004424  6.445392 11.964481 
##       609       610       611       612       613       614       615       616 
##  6.372006 14.213559  8.046942  6.982840  6.333154  7.639000  9.903187 10.375882 
##       617       618       619       620       621       622       623       624 
##  6.415174  6.413016  6.410857 16.067645  9.417542 16.713014  7.343296  8.210983 
##       625       626       627       628       629       630       631       632 
##  9.983049 12.024917  7.941180  7.615258  9.262135 10.714754  7.533238  6.754047 
##       633       634       635       636       637       638       639       640 
##  6.374164  7.274227  8.994490 13.015634  9.139105 11.664461  9.616117 12.603375 
##       641       642       643       644       645       646       647       648 
##  6.721670 12.055135  6.808007  9.141263  7.520287  6.766997  6.529570  7.585040 
##       649       650       651       652       653       654       655       656 
##  6.775631  6.782106  7.345455  7.764189  6.792898  7.794407 11.273786  6.525254 
##       657       658       659       660       661       662       663       664 
##  6.553313 15.204276  6.546838  7.187890  6.566264 11.405450  8.139755  7.507337 
##       665       666       667       668       669       670       671       672 
## 16.065487  7.960605  8.232567  6.529570 12.719930  7.326029  9.829800  9.311779 
##       673       674       675       676       677       678       679       680 
##  9.898870 10.447110 15.130889  6.732462 10.021900 11.970957  9.413225 11.299687 
##       681       682       683       684       685       686       687       688 
##  8.234725  7.185731 10.887428  9.719721  6.905136  9.115362  8.929738  7.537554 
##       689       690       691       692       693       694       695       696 
##  7.228900 13.332923 14.125064 14.554590 11.103270  9.199541  9.350630  6.326679 
##       697       698       699       700       701       702       703       704 
##  7.546188 13.725756 11.206875 10.701804  7.658426  7.865635  7.187890  9.754256 
##       705       706       707       708       709       710       711       712 
##  7.526762  6.348263 17.360541 12.186799  8.940530 10.280911 13.475379  7.382148 
##       713       714       715       716       717       718       719       720 
## 15.847486  6.810166  9.093778  8.159180  7.064860 10.436317 11.813392  9.184432 
##       721       722       723       724       725       726       727       728 
##  8.174289  7.444742 11.401133  7.477119 13.693379 15.417960  7.496544 13.907063 
##       729       730       731       732       733       734       735       736 
##  7.142563  8.888728 14.455302  7.392940  9.935563  8.299478  7.768506 14.915047 
##       737       738       739       740       741       742       743       744 
##  6.676343 14.986275 10.507545  7.923912 16.281329  8.103061 14.543798 14.472570 
##       745       746       747       748       749       750       751       752 
##  7.522445  6.611591  8.871460  6.527412  8.992332 16.065487  7.332504 15.204276 
##       753       754       755       756       757       758       759       760 
##  9.816850 13.924330  7.202999  6.333154 12.825692 13.689062  7.466326  7.669218 
##       761       762       763       764       765       766       767       768 
##  7.067018 14.770433  7.330346  6.669868  7.423158  6.590006 11.314796  8.113854 
##       769       770       771       772       773       774       775       776 
## 11.066577 12.063769 15.202118 10.673744 16.706538  8.005932  9.801741  8.882252 
##       777       778       779       780       781       782       783       784 
##  7.224583 16.713014  7.835417  9.864335  6.641809 14.768274 12.137156 14.697046 
##       785       786       787       788       789       790       791       792 
##  6.993632  7.967081  7.155513  9.937722  7.524604  9.348472 11.621292  7.518129 
##       793       794       795       796       797       798       799       800 
##  6.922404  8.157022 10.496753 14.554590  6.507986  7.582881  7.561297 17.144699 
##       801       802       803       804       805       806       807       808 
##  8.295161 11.925630  9.497403 12.035709 11.491787  9.419700 11.707629  6.434600 
##       809       810       811       812       813       814       815       816 
## 10.401783  7.701595  9.855702  9.424017  7.362722  7.308762  7.483594 10.239901 
##       817       818       819       820       821       822       823       824 
##  7.030325  6.486402 13.259536 11.010458 10.578773  7.425316  7.464168 13.697696 
##       825       826       827       828       829       830       831       832 
##  7.440425  7.088602  9.989524 15.849645  9.387324 11.170182  6.853334  8.979382 
##       833       834       835       836       837       838       839       840 
##  7.505178  6.533887 12.454444 14.986275 12.050819 12.374582  6.372006 15.202118 
##       841       842       843       844       845       846       847       848 
## 13.186150 17.360541 14.498471  9.048451  9.721879  7.328187  7.541871  7.967081 
##       849       850       851       852       853       854       855       856 
##  9.527621 12.394008  6.680660  9.264293 10.934914  9.212491  7.787932  9.521146 
##       857       858       859       860       861       862       863       864 
##  8.152705  6.253292  8.072843 11.532797  9.657127  6.898661 11.316954  9.370056 
##       865       866       867       868       869       870       871       872 
## 14.261045 14.986275  7.852684  6.510145  6.393590 13.963182  6.449709  7.846209 
##       873       874       875       876       877       878       879       880 
##  8.947005 12.635751 15.199959  7.995140  7.459851  7.077810  8.273577  7.421000 
##       881       882       883       884       885       886       887       888 
##  7.764189  7.906645  6.516620 10.147089  6.905136  8.981540 15.204276 12.057294 
##       889       890       891       892 
##  7.904486  7.921754  9.354947 12.702662
tabel_data <- rbind(data.frame("y_aktual"=triceps$triceps,
                               "y_pred"=predict(mod_linear),
                               "residual"=residuals(mod_linear)))
tabel_data
##     y_aktual    y_pred      residual
## 1        3.4  8.798074  -5.398073843
## 2        4.0  8.336171  -4.336171174
## 3        4.2  8.364231  -4.164230898
## 4        4.2  8.677202  -4.477202306
## 5        4.4  8.381498  -3.981497986
## 6        4.4  8.759222  -4.359222149
## 7        4.8  8.552014  -3.752013362
## 8        4.8  8.362072  -3.562072044
## 9        4.8  8.575756  -3.775756155
## 10       5.0  8.355597  -3.355597021
## 11       5.0  8.649143  -3.649142581
## 12       5.0  8.653460  -3.653459528
## 13       5.2  8.573598  -3.373598063
## 14       5.2  8.353439  -3.153438738
## 15       5.2  8.346963  -3.146963525
## 16       5.2  8.772173  -3.572173068
## 17       5.2  8.627558  -3.427558658
## 18       5.2  8.372864  -3.172864585
## 19       5.4  8.353439  -2.953438452
## 20       5.4  8.806708  -3.406707529
## 21       5.4  8.441934  -3.041933794
## 22       5.4  8.355597  -2.955596925
## 23       5.4  8.573598  -3.173597777
## 24       5.4  8.754906  -3.354905408
## 25       5.4  8.580073  -3.180072991
## 26       5.4  8.441934  -3.041933794
## 27       5.5  8.657776  -3.157776268
## 28       5.6  8.716054  -3.116053905
## 29       5.6  8.703103  -3.103103271
## 30       5.6  8.364231  -2.764230803
## 31       5.6  8.340488  -2.740488216
## 32       5.6  8.495894  -2.895894580
## 33       5.8  8.817500  -3.017499594
## 34       5.8  8.465677  -2.665676493
## 35       5.8  8.478627  -2.678626920
## 36       5.8  8.463518  -2.663518019
## 37       5.8  8.830450  -3.030450022
## 38       6.0  8.782965  -2.782964831
## 39       6.0  8.493736  -2.493736217
## 40       6.0  8.700945  -2.700944909
## 41       6.0  8.422508  -2.422508249
## 42       6.0  8.485103  -2.485102530
## 43       6.0  8.638351  -2.638350627
## 44       6.0  8.435459  -2.435458676
## 45       6.2  8.703103  -2.503103367
## 46       6.2  8.653460  -2.453459719
## 47       6.2  8.450568  -2.250567768
## 48       6.2  8.614608  -2.414608025
## 49       6.4  8.785123  -2.385123209
## 50       6.4  8.666410  -2.266409860
## 51       6.4  8.383657  -1.983656459
## 52       6.6  8.459201  -1.859201359
## 53       6.6  8.666410  -2.066410051
## 54       6.6  8.657776  -2.057776364
## 55       6.6  8.670727  -2.070726997
## 56       6.8  8.763539  -1.963539000
## 57       6.8  8.644826  -1.844825650
## 58       6.8  8.830450  -2.030450022
## 59       7.0  8.495894  -1.495894484
## 60       7.0  8.463518  -1.463518210
## 61       7.0  8.467835  -1.467835156
## 62       7.0  8.651301  -1.651301055
## 63       7.0  8.605974  -1.605974147
## 64       7.0  8.782965  -1.782964831
## 65       7.0  8.599499  -1.599498933
## 66       7.0  8.504528  -1.504528171
## 67       7.2  8.461360  -1.261359928
## 68       7.2  8.731163  -1.531162901
## 69       7.4  8.815341  -1.415341216
## 70       7.4  8.413875  -1.013874466
## 71       8.0  8.316745  -0.316745327
## 72       8.0  8.787282  -0.787281778
## 73       8.4  8.651301  -0.251301436
## 74       8.6  8.683678  -0.083677153
## 75       8.8  8.789440   0.010559940
## 76       8.8  8.336171   0.463829017
## 77       9.0  8.754906   0.245094497
## 78       9.0  8.828292   0.171708261
## 79       9.8  8.834767   0.965233032
## 80       9.8  8.694469   1.105530702
## 81      10.0  8.623242   1.376758479
## 82      10.2  8.642667   1.557332442
## 83      10.2  8.547697   1.652302997
## 84      13.0  8.474310   4.525689630
## 85      14.2  8.452726   5.747273759
## 86      16.0  8.631875   7.368124792
## 87       9.4 14.077578  -4.677578494
## 88       8.2  6.840384   1.359616282
## 89      21.2 13.043693   8.156307429
## 90       9.6  7.116662   2.483338564
## 91      10.2 11.457252  -1.257252372
## 92      13.2 10.406100   2.793900193
## 93      13.6 14.986275  -1.386274771
## 94      12.2 10.026217   2.173782828
## 95       6.8 10.065069  -3.265068484
## 96       6.4 10.097445  -3.697444854
## 97      14.0  9.352789   4.647211215
## 98       6.0  7.876427  -1.876426986
## 99      11.2 10.108237   1.091762494
## 100      7.4  7.382148   0.017852251
## 101      8.2 11.560856  -3.360856615
## 102     13.4 11.850085   1.549914374
## 103     17.6 11.191766   6.408234639
## 104     15.6 15.633802  -0.033801906
## 105      4.2  7.766347  -3.566347514
## 106     14.0 10.123346   3.876653784
## 107      8.2  7.013057   1.186942389
## 108      8.2 10.932755  -2.732755326
## 109     21.8 12.139314   9.660685173
## 110      7.8  6.682819   1.117181603
## 111      6.0  6.531729  -0.531728912
## 112      9.2  9.149897   0.050102770
## 113      6.4  7.133929  -0.733929096
## 114     17.4 14.915047   2.484952846
## 115      8.6  7.371356   1.228644594
## 116      5.8  7.248326  -1.448325404
## 117      8.0  8.959956  -0.959955722
## 118     10.0 12.860228  -2.860227641
## 119     13.6 14.120747  -0.520746372
## 120      7.6  8.182923  -0.582923172
## 121      8.2  6.421649   1.778350508
## 122      8.0  6.892186   1.107814299
## 123      9.0  7.403732   1.596267836
## 124     23.4 12.048660  11.351339370
## 125      6.4  7.054067  -0.654067389
## 126      9.0 11.297528  -2.297528459
## 127      5.2  8.867143  -3.667143624
## 128      5.8  8.131121  -2.331120765
## 129      8.2 10.414734  -2.214733700
## 130      4.2 17.151174 -12.951174136
## 131      4.2  7.677852  -3.477852172
## 132     22.6 10.552872  12.047127882
## 133      6.8  8.107378  -1.307378177
## 134      9.4  9.106728   0.293271219
## 135      8.0 13.037218  -5.037218326
## 136     11.0 10.395308   0.604692338
## 137     11.8 10.473011   1.326989552
## 138      8.4  6.501511   1.898488636
## 139     15.8 11.161548   4.638452249
## 140     17.4 11.068736   6.331263966
## 141      6.0  6.570581  -0.570580555
## 142      4.4  8.012408  -3.612407511
## 143     12.6 12.609850  -0.009849722
## 144     10.6 13.943756  -3.343755687
## 145      9.2  6.365530   2.834469525
## 146      7.8  6.365530   1.434469906
## 147      6.0  6.510145  -0.510144695
## 148      7.2  7.669218  -0.469218485
## 149     16.2 11.146439   5.053561722
## 150      5.2  7.496544  -2.296544541
## 151      6.6  7.129612  -0.529612443
## 152      6.0  8.267102  -2.267101679
## 153      6.2  6.678502  -0.478501935
## 154     13.6 10.453585   3.146415590
## 155      8.0 10.978082  -2.978081837
## 156      9.0  6.454026   2.545974322
## 157     11.2 11.105429   0.094570936
## 158     10.2 12.579632  -2.379632493
## 159      6.2  7.844051  -1.644050799
## 160      5.8  7.310920  -1.510919685
## 161      8.4  9.283719  -0.883719671
## 162     14.6 13.691221   0.908779500
## 163      6.6  7.295811  -0.695811071
## 164      9.6  9.303145   0.296855245
## 165      5.2  7.073493  -1.873493471
## 166     10.4  9.307462   1.092537741
## 167      7.4  9.244868  -1.844867500
## 168     10.2  6.777789   3.422210563
## 169      6.8  7.969239  -1.169238981
## 170     24.8 17.367016   7.432982913
## 171     19.0 14.122906   4.877094362
## 172      3.6  8.992332  -5.392332092
## 173      8.2  7.082127   1.117872842
## 174      7.0  7.338979  -0.338979410
## 175      6.2  9.020392  -2.820391721
## 176      4.6  7.798724  -3.198723796
## 177      9.4  6.833908   2.566091356
## 178      6.6  9.326888  -2.726887819
## 179      5.6  8.858510  -3.258509842
## 180      6.4  7.721020  -1.321020320
## 181     21.6 13.995559   7.604441780
## 182     15.2 17.367016  -2.167016514
## 183     12.4 12.109096   0.290903767
## 184      5.8  7.772823  -1.972822449
## 185     13.6 13.693379  -0.093378561
## 186     19.4 14.241619   5.158380837
## 187      7.0  9.020392  -2.020391530
## 188      6.8  9.119679  -2.319678842
## 189      7.0  9.132630  -2.132629666
## 190     10.4  9.430492   0.969507652
## 191      7.0  6.404382   0.595618086
## 192     14.2 13.330764   0.869236128
## 193      8.8  9.093778  -0.293777781
## 194      9.2  6.941829   2.258170357
## 195      6.4  9.074352  -2.674352029
## 196      6.8  8.148388  -1.348388138
## 197      5.0  8.938371  -3.938371402
## 198      7.2  8.269260  -1.069260342
## 199      7.6  9.708929  -2.108928928
## 200      8.2  9.197382  -0.997382405
## 201      8.6  7.302286   1.297714193
## 202      5.4  6.954780  -1.554779887
## 203      6.8  9.255660  -2.455659565
## 204      5.0  8.247676  -3.247675832
## 205      8.4  6.546838   1.853161729
## 206     24.8 12.773890  12.026108876
## 207      5.4  7.686486  -2.286485573
## 208      6.8  6.831750  -0.031749650
## 209      8.0  7.246167   0.753832776
## 210      6.2  9.272927  -3.072927320
## 211      6.4  6.963414  -0.563413574
## 212      7.0  6.516620   0.483380040
## 213      6.6  9.698136  -3.098136562
## 214      7.2  6.590006   0.609993433
## 215      9.0  9.756414  -0.756414008
## 216      7.0  9.596691  -2.596690697
## 217      7.8  9.683028  -1.883027376
## 218     11.2 13.546606  -2.346606250
## 219     12.2  6.980681   5.219318715
## 220     16.0  9.706770   6.293229640
## 221     11.0 15.849645  -4.849644666
## 222     13.4 14.409976  -1.009975955
## 223      6.0  9.639859  -3.639859132
## 224      8.2 12.270978  -4.070977826
## 225     18.2 14.772591   3.427409928
## 226      5.8  8.118170  -2.318170131
## 227      7.6  7.453376   0.146623989
## 228      6.6  6.339629   0.260370693
## 229      7.0  7.347613  -0.347613097
## 230      9.8  9.836276  -0.036275678
## 231      6.0  7.733971  -1.733970946
## 232     17.2 13.848786   3.351215044
## 233      9.8  6.715195   3.084805226
## 234     11.0  9.434809   1.565191087
## 235      6.2  9.432650  -3.232650631
## 236     12.0 12.914188  -0.914188236
## 237     10.4  6.766997   3.633002481
## 238      9.2 15.849645  -6.649644857
## 239      7.6  6.421649   1.178350604
## 240     15.4 14.483362   0.916637604
## 241      6.0  8.157022  -2.157022016
## 242      8.4  6.497194   1.902805480
## 243      7.4 15.849645  -8.449644571
## 244     19.0 10.278753   8.721247420
## 245      7.4  9.654968  -2.254968143
## 246      9.6 13.652369  -4.052368806
## 247     16.2 11.539272   4.660728659
## 248     12.2 10.600358   1.599642134
## 249     10.8 11.776699  -0.976698612
## 250      4.8  8.085794  -3.285793857
## 251     14.0 10.090970   3.909030058
## 252      9.2  9.542730  -0.342730293
## 253      5.4  7.936863  -2.536862802
## 254      5.6  7.278544  -1.678543697
## 255      7.4  9.572948  -2.172948014
## 256      5.0  9.156372  -4.156372253
## 257     10.0  9.566473   0.433527310
## 258      7.2  8.970748  -1.770748073
## 259      7.8  6.466976   1.333023982
## 260      9.2 11.373073  -2.173073564
## 261      7.2 14.552432  -7.352431701
## 262      5.4  7.995140  -2.595140137
## 263      7.8  7.060543   0.739457441
## 264      6.0  7.528921  -1.528920728
## 265     12.0  9.182273   2.817726686
## 266      8.6  6.309411   2.290589113
## 267     10.4 10.026217   0.373782637
## 268     12.6 10.729863   1.870137197
## 269      8.0 10.276594  -2.276594107
## 270      8.6  7.166305   1.433694916
## 271      5.0 13.853103  -8.853102665
## 272      8.2  9.037659  -0.837659095
## 273      9.2  7.205157   1.994842649
## 274      3.2  9.777998  -6.577998280
## 275     16.8 12.074561   4.725438133
## 276      6.0  7.867793  -1.867793196
## 277     12.2 12.473870  -0.273869777
## 278      9.0 14.768274  -5.768273889
## 279     16.2 14.125064   2.074937063
## 280      9.4 10.738497  -1.338497459
## 281      7.0  8.893044  -1.893044494
## 282      9.0 14.770433  -5.770432774
## 283     11.0 14.768274  -3.768273889
## 284     15.6 14.768274   0.831726493
## 285      9.0  9.691661  -0.691661459
## 286     15.4 10.280911   5.119088565
## 287     11.0 12.184641  -1.184640766
## 288     12.0 13.907063  -1.907063260
## 289      8.2  6.387115   1.812885282
## 290      6.4  9.223283  -2.823283386
## 291     29.2 13.963182  15.236818847
## 292      7.2  8.888728  -1.688727944
## 293     24.8 12.398325  12.401674566
## 294     10.6  9.711087   0.888913075
## 295     13.0 13.395516  -0.395516230
## 296      7.8  7.114503   0.685496846
## 297     13.0 13.786191  -0.786191231
## 298     10.0 14.392709  -4.392708611
## 299      7.0  7.300128  -0.300127819
## 300      7.8 15.202118  -7.402117340
## 301      5.2  7.207316  -2.007315721
## 302     14.0 14.321480  -0.321480231
## 303     15.0 15.417960  -0.417959909
## 304      4.0  9.175798  -5.175798100
## 305     11.8  7.153355   4.646645255
## 306      8.0  9.639859  -1.639859132
## 307     10.2  6.797215   3.402784768
## 308     14.2  9.182273   5.017726495
## 309     12.0 15.847486  -3.847485781
## 310     11.4  8.912470   2.487529278
## 311     12.0 11.081686   0.918313920
## 312      6.6  6.943988  -0.343987969
## 313      8.2  7.205157   0.994842649
## 314     20.2 15.199959   5.000042117
## 315     14.6 16.065487  -1.465486663
## 316     14.2 16.274854  -2.074853783
## 317     10.2  6.413016   3.786984195
## 318     10.0 16.495013  -6.495012917
## 319     20.2 15.851803   4.348198035
## 320     11.0 15.849645  -4.849644666
## 321      8.4  6.855492   1.544507139
## 322     14.0 12.180324   1.819676180
## 323     10.2  6.859809   3.340190486
## 324      9.8  6.803690   2.996309884
## 325      5.2  7.518129  -2.318128758
## 326     19.0 14.701363   4.298636722
## 327      6.2  9.171481  -2.971481345
## 328      8.2  6.883552   1.316447796
## 329      6.6 12.031393  -5.431392970
## 330      7.2  6.341788   0.858212176
## 331      6.4  9.708929  -3.308928738
## 332     15.2 10.529130   4.670870103
## 333      6.6  7.151197  -0.551196661
## 334     13.2  9.965781   3.234218842
## 335     27.0 16.935332  10.064668433
## 336      9.0 16.931015  -7.931014620
## 337     13.8 16.926698  -3.126697483
## 338     19.0 15.204276   3.795724408
## 339      9.4 14.511422  -5.111422136
## 340      9.8  6.572739   3.227261214
## 341     30.4 13.958865  16.441134649
## 342      8.4  7.129612   1.270387271
## 343      8.4  6.486402   1.913597588
## 344     14.2  9.331205   4.868795139
## 345      6.4  8.191557  -1.791556668
## 346      9.2  6.438917   2.761083109
## 347      6.2  7.218108  -1.018107881
## 348      9.0  7.390782   1.609218366
## 349      7.0 12.402642  -5.402641618
## 350      8.2  7.712387   0.487613081
## 351      6.0  7.824625  -1.824624761
## 352      8.2  7.077810   1.122189686
## 353      8.2  6.898661   1.301338843
## 354      9.8 15.847486  -6.047485591
## 355     10.0 15.847486  -5.847485781
## 356      6.2  7.518129  -1.318128758
## 357      7.6  9.346314  -1.746313666
## 358      5.8  9.799583  -3.999582458
## 359     11.4 12.180324  -0.780324201
## 360      6.8  8.923263  -2.123262310
## 361     17.0 15.417960   1.582040091
## 362     20.6 16.497172   4.102828580
## 363     12.4 10.900379   1.499620757
## 364      7.6  8.286528  -0.686527621
## 365      7.0  9.393799  -2.393798952
## 366     11.4 10.166514   1.233485174
## 367      9.2  6.479927   2.720073070
## 368      6.4  9.136946  -2.736946311
## 369     19.8 11.204717   8.595282655
## 370      8.8  6.788581   2.011418836
## 371     10.2 13.697696  -3.497696080
## 372     27.4 13.475379  13.924621116
## 373      5.0 11.955848  -6.955847960
## 374     21.0 16.065487   4.934512955
## 375     11.8 17.142540  -5.342539862
## 376      5.6  9.534096  -3.934096511
## 377      4.6 13.978291  -9.378290912
## 378     12.4 11.964481   0.435518177
## 379     19.2 13.598409   5.601592170
## 380      8.0 12.173849  -4.173848812
## 381      7.6  6.760522   0.839478084
## 382      8.8  6.823116   1.976884037
## 383      8.4  6.883552   1.516447605
## 384      8.2  6.270560   1.929440164
## 385      6.2  7.187890  -0.987889977
## 386      7.8  7.321712   0.478288155
## 387      7.6 14.552432  -6.952431606
## 388     20.2 15.208593   4.991408224
## 389     21.5 13.296229   8.203771067
## 390     18.2 12.098304   6.101696866
## 391     17.2 12.070244   5.129756606
## 392      6.0  7.503020  -1.503019667
## 393      8.4  6.462659   1.937340253
## 394     11.8  9.911820   1.888179818
## 395      6.0  6.633175  -0.633174836
## 396      4.2  9.510354  -5.310354019
## 397      7.4  9.415383  -2.015382971
## 398      6.2  7.295811  -1.095811166
## 399      7.6  6.691452   0.908547630
## 400     11.2 11.355806  -0.155806191
## 401      7.0  8.157022  -1.157022016
## 402      6.8  6.831750  -0.031749650
## 403     18.2 15.417960   2.782040854
## 404      6.4  6.704403  -0.304402709
## 405      8.0  7.138246   0.861753965
## 406      9.0  6.413016   2.586984386
## 407      8.8 14.856769  -6.056769040
## 408      9.2 10.460060  -1.260060402
## 409      8.0  6.721670   1.278329770
## 410      5.8  7.807357  -2.007357197
## 411     20.4 11.770223   8.629776236
## 412     15.8 12.262344   3.537656037
## 413     18.0  9.713246   8.286754221
## 414     19.0 11.563015   7.436985103
## 415      9.2 11.595391  -2.395391362
## 416     16.0 11.647193   4.352806707
## 417      4.6  8.264943  -3.664943301
## 418      7.4  9.244868  -1.844867500
## 419      6.4  9.838434  -3.438434247
## 420     23.4  9.335521  14.064478208
## 421      6.2  7.556980  -1.356980452
## 422     17.8 13.261694   4.538305051
## 423     13.2 13.261694  -0.061694376
## 424      6.4  7.779298  -1.379297758
## 425      6.2  7.921754  -1.721753981
## 426      7.8  6.372006   1.427994628
## 427      8.8  9.283719  -0.483719099
## 428      8.0  7.015216   0.984784158
## 429      8.0  6.417332   1.582667542
## 430     11.2  6.725987   4.474012736
## 431      6.6  8.163497  -1.563497325
## 432      7.6  7.090761   0.509239251
## 433      5.0  9.262135  -4.262134969
## 434     14.8  9.631225   5.168774746
## 435      4.0  8.847718  -4.847717586
## 436      6.0  7.921754  -1.921753791
## 437      6.2  6.902978  -0.702978000
## 438     13.8 13.661003   0.138997111
## 439     36.8 14.125064  22.674935537
## 440     10.0 10.993191  -0.993190738
## 441     14.0 13.477537   0.522463436
## 442      6.0  7.608782  -1.608782383
## 443      7.6 13.557398  -5.957398109
## 444      5.8  7.153355  -1.353354745
## 445     10.8  6.555472   4.244528614
## 446     26.2 13.477537  12.722464199
## 447      7.6  6.946146   0.653853609
## 448      7.4  7.418841  -0.018840970
## 449      5.8  7.684327  -1.884327004
## 450      9.2 13.473220  -4.273219808
## 451      5.6  7.932546  -2.332546046
## 452     10.4  9.713246   0.686753839
## 453     20.2 13.261694   6.938306577
## 454     11.4 10.665111   0.734888983
## 455      9.0 12.219176  -3.219175514
## 456      7.0  8.146230  -1.146229856
## 457      7.8  7.092919   0.707081064
## 458     10.4  8.297319   2.102680139
## 459      5.2  7.675694  -2.475693699
## 460      8.0  6.741096   1.258903975
## 461      7.0  9.430492  -2.430491967
## 462      4.6  8.023200  -3.423199861
## 463     14.8 13.693379   1.106621248
## 464      9.8  6.626700   3.173300620
## 465     13.2 12.232126   0.967873868
## 466      6.0  6.477768  -0.477768317
## 467     13.4 12.542939   0.857060537
## 468     21.4 13.475379   7.924621116
## 469      8.4 11.431351  -3.031351296
## 470     16.4 12.396166   4.003833420
## 471     17.2 14.086212   3.113788757
## 472      7.2  6.857651   0.342348908
## 473     12.0  9.883761   2.116238956
## 474     27.2 16.719489  10.480511575
## 475      5.4  8.893044  -3.493044399
## 476      5.8  6.926720  -1.126720309
## 477      6.2  7.997299  -1.797298896
## 478      8.8  6.717353   2.082646804
## 479      7.0  7.572089  -0.572089162
## 480      5.0  7.779298  -2.779297854
## 481     14.8  9.549205   5.250794874
## 482      6.0  9.115362  -3.115362292
## 483     12.8  9.976573   2.823426858
## 484      8.2  7.000107   1.199892919
## 485     16.0 12.314146   3.685853724
## 486      8.2  6.972047   1.227952453
## 487      8.8  6.993632   1.806368566
## 488      7.2  6.393590   0.806410003
## 489     26.0 14.768274  11.231726111
## 490      7.0  9.035500  -2.035500431
## 491      7.4  7.233217   0.166783402
## 492     11.2 13.641577  -2.441577424
## 493      7.6  7.060543   0.539457155
## 494     11.4 14.804968  -3.404967903
## 495      8.4 16.928857  -8.528856940
## 496      7.0  7.440425  -0.440425385
## 497      6.2 11.398975  -5.198974831
## 498      7.8  8.100903  -0.300902758
## 499      5.8  7.852684  -2.052684105
## 500     14.0 10.902537   3.097463077
## 501      5.8  8.133279  -2.333279238
## 502      9.6  6.499353   3.100647821
## 503     23.2 12.044343  11.155657460
## 504      8.2  8.299478  -0.099478144
## 505      9.6  6.648284   2.951716593
## 506      6.6 15.847486  -9.247485877
## 507     10.6 10.801091  -0.201090771
## 508      9.0  6.758363   2.241636601
## 509      5.4  7.334663  -1.934662471
## 510      5.6  7.513812  -1.913811819
## 511     15.0 11.966640   3.033360086
## 512     10.2  6.454026   3.745974131
## 513      9.0  6.400065   2.599934929
## 514     12.7 12.609850   0.090149706
## 515     13.2 10.039167   3.160832401
## 516      8.6  6.931037   1.668963038
## 517      6.4  7.967081  -1.567080603
## 518      7.4  6.410857   0.989142903
## 519      8.2 11.893253  -3.693253664
## 520      6.6  9.581582  -2.981581892
## 521      4.2  8.154864  -3.954863734
## 522      9.8 15.631643  -5.831643212
## 523     17.5 13.924330   3.575669778
## 524      8.4 10.293861  -1.893861862
## 525      8.2  6.922404   1.277596204
## 526      7.0  6.525254   0.474746353
## 527      8.2  9.044134  -0.844134308
## 528     11.4 13.477537  -2.077536946
## 529      6.8  7.272068  -0.472068094
## 530     13.4 15.849645  -2.449645048
## 531      9.2  7.341138   1.858861926
## 532     14.4 12.178165   2.221834272
## 533     11.4 16.067645  -4.667645488
## 534     11.2 11.496103  -0.296103654
## 535     27.2 12.594741  14.605259560
## 536      8.4  6.833908   1.566091356
## 537      9.0  6.898661   2.101339034
## 538     12.6 15.199959  -2.599958264
## 539     10.6  6.479927   4.120073642
## 540      8.6 14.984116  -6.384115886
## 541      7.2  7.397257  -0.197257039
## 542      7.2  7.395098  -0.195098668
## 543      5.3 13.259536  -7.959535933
## 544      6.6  8.910312  -2.310311963
## 545     16.0  7.032483   8.967516784
## 546      8.0 10.062910  -2.062910202
## 547      7.8  7.423158   0.376842282
## 548      8.8 11.720580  -2.920579544
## 549     18.2 16.065487   2.134513718
## 550     10.0 12.583949  -2.583949249
## 551      9.2 12.374582  -3.174582481
## 552     11.4  6.516620   4.883379659
## 553      8.0  9.398116  -1.398115693
## 554     16.0 14.986275   1.013724848
## 555     15.6 10.065069   5.534931706
## 556      7.0  7.334663  -0.334662566
## 557     14.8 11.003983   3.796017087
## 558      4.0 11.601867  -7.601866591
## 559     24.0 15.202118   8.797882469
## 560     10.0 10.496753  -0.496753432
## 561      8.8  6.890027   1.909972912
## 562      6.8  8.979382  -2.179381378
## 563      7.0  7.136088  -0.136087562
## 564      5.4  9.145580  -3.745579998
## 565      5.4  7.287177  -1.887177193
## 566     23.6 10.688853  12.911147364
## 567      6.0  7.882902  -1.882902200
## 568      7.0  8.215300  -1.215299557
## 569     36.6 11.476678  25.123320858
## 570      9.8  7.198682   2.601318348
## 571     27.2 15.417960  11.782040854
## 572     11.4  6.786423   4.613576685
## 573      6.8  6.404382   0.395618276
## 574     10.0  6.989315   3.010685219
## 575     15.8 10.116871   5.683129394
## 576      9.0 10.179465  -1.179465284
## 577      5.4  8.003774  -2.603773824
## 578     33.4 14.986275  18.413726374
## 579      8.6  6.443234   2.156766837
## 580      9.0  7.071335   1.928665090
## 581     11.0 14.986275  -3.986275152
## 582     12.6 11.155073   1.444927860
## 583      8.0  6.853334   1.146665942
## 584     16.4 10.291703   6.108296611
## 585     10.2  6.419491   3.780508930
## 586      7.4  6.417332   0.982667638
## 587      6.8  8.087953  -1.287952330
## 588      8.0  6.432441   1.567558565
## 589      7.8  6.384956   1.415044085
## 590      9.2 15.415801  -6.215801215
## 591      6.8  6.313728   0.486272066
## 592     24.0 14.094846   9.905154102
## 593     15.0 14.584808   0.415191804
## 594      6.0  6.570581  -0.570580555
## 595      7.8  6.512303   1.287697074
## 596      7.0  9.970098  -2.970097913
## 597      8.4  9.037659  -0.637659285
## 598      8.0  7.710228   0.289771642
## 599      6.0  6.441075  -0.441075122
## 600      6.4 12.247235  -5.847235158
## 601      7.6  7.552663   0.047336487
## 602     11.8 10.062910   1.737089989
## 603      5.6  7.589357  -1.989356631
## 604      5.2  7.630367  -2.430366791
## 605      7.0  7.157672  -0.157671779
## 606      7.7  7.004424   0.695576076
## 607      8.8  6.445392   2.354608225
## 608      8.8 11.964481  -3.164481251
## 609     11.0  6.372006   4.627994437
## 610     11.4 14.213559  -2.813559423
## 611      6.0  8.046942  -2.046942354
## 612      5.6  6.982840  -1.382839611
## 613      8.4  6.333154   2.066845685
## 614      7.4  7.639000  -0.239000192
## 615     11.2  9.903187   1.296812918
## 616      7.0 10.375882  -3.375881815
## 617      9.0  6.415174   2.584825964
## 618      7.0  6.413016   0.586984386
## 619      8.6  6.410857   2.189143189
## 620     12.0 16.067645  -4.067645106
## 621      8.2  9.417542  -1.217541730
## 622     15.6 16.713014  -1.113013799
## 623      6.2  7.343296  -1.143296444
## 624      5.2  8.210983  -3.010982801
## 625     18.6  9.983049   8.616951629
## 626      9.2 12.024917  -2.824917646
## 627      4.4  7.941180  -3.541179542
## 628      4.8  7.615258  -2.815257509
## 629      8.4  9.262135  -0.862135351
## 630     10.0 10.714754  -0.714754284
## 631      6.2  7.533238  -1.333237762
## 632      5.4  6.754047  -1.354046460
## 633      6.8  6.374164   0.425836206
## 634      8.2  7.274227   0.925773154
## 635      9.2  8.994490   0.205509340
## 636     10.0 13.015634  -3.015634006
## 637      5.2  9.139105  -3.939105070
## 638     10.2 11.664461  -1.464460858
## 639      9.0  9.616117  -0.616116544
## 640     16.2 12.603375   3.596625667
## 641      9.8  6.721670   3.078329961
## 642      6.6 12.055135  -5.455135352
## 643      5.8  6.808007  -1.008006960
## 644      6.4  9.141263  -2.741263257
## 645      6.2  7.520287  -1.320287231
## 646      7.0  6.766997   0.233002862
## 647     11.2  6.529570   4.670429319
## 648      7.2  7.585040  -0.385039883
## 649      8.2  6.775631   1.424368985
## 650      9.0  6.782106   2.217893910
## 651      4.4  7.345455  -2.945454631
## 652      4.6  7.764189  -3.164189048
## 653      8.2  6.792898   1.407101611
## 654      7.2  7.794407  -0.594407048
## 655     14.2 11.273786   2.926213732
## 656      8.4  6.525254   1.874745972
## 657      8.0  6.553313   1.446686845
## 658     22.2 15.204276   6.995725171
## 659      7.6  6.546838   1.053162015
## 660      5.4  7.187890  -1.787889691
## 661      6.4  6.566264  -0.166263616
## 662     17.6 11.405450   6.194550733
## 663      7.4  8.139755  -0.739754547
## 664      6.8  7.507337  -0.707336320
## 665      5.2 16.065487 -10.865487235
## 666      6.2  7.960605  -1.760605675
## 667      5.2  8.232567  -3.032567122
## 668      9.8  6.529570   3.270429700
## 669     14.0 12.719930   1.280070234
## 670      8.0  7.326029   0.673971121
## 671     16.8  9.829800   6.970198787
## 672      9.2  9.311779  -0.111779014
## 673      8.0  9.898870  -1.898869945
## 674     17.6 10.447110   7.152890598
## 675     13.6 15.130889  -1.530888769
## 676      6.8  6.732462   0.067537852
## 677      9.0 10.021900  -1.021900035
## 678     11.0 11.970957  -0.970956861
## 679      9.0  9.413225  -0.413224593
## 680     14.0 11.299687   2.700313068
## 681      6.0  8.234725  -2.234725198
## 682      9.6  7.185731   2.414269069
## 683      9.2 10.887428  -1.687428213
## 684      7.2  9.719721  -2.519720978
## 685     11.6  6.905136   4.694864150
## 686      6.4  9.115362  -2.715362197
## 687      5.6  8.929738  -3.329737810
## 688      4.0  7.537554  -3.537554414
## 689      5.8  7.228900  -1.428899660
## 690     20.4 13.332923   7.067077053
## 691     19.8 14.125064   5.674935537
## 692     14.0 14.554590  -0.554590395
## 693     14.6 11.103270   3.496729981
## 694     10.2  9.199541   1.000459121
## 695     12.0  9.350630   2.649369688
## 696      7.0  6.326679   0.673321332
## 697      6.2  7.546188  -1.346188292
## 698     13.6 13.725756  -0.125755247
## 699     18.0 11.206875   6.793125357
## 700     11.0 10.701804   0.298196144
## 701      6.2  7.658426  -1.458426325
## 702      5.0  7.865635  -2.865634826
## 703     10.4  7.187890   3.212109833
## 704      9.2  9.754256  -0.554255725
## 705      7.0  7.526762  -0.526762254
## 706      5.6  6.348263  -0.748262993
## 707     15.2 17.360541  -2.160541507
## 708     14.4 12.186799   2.213200379
## 709      6.0  8.940530  -2.940529875
## 710     18.0 10.280911   7.719088946
## 711     17.0 13.475379   3.524621497
## 712      7.5  7.382148   0.117852156
## 713     12.8 15.847486  -3.047485591
## 714      7.0  6.810166   0.189834428
## 715      5.4  9.093778  -3.693777876
## 716      4.6  8.159180  -3.559180585
## 717      9.2  7.064860   2.135140216
## 718     12.0 10.436317   1.563682582
## 719     19.2 11.813392   7.386608740
## 720     11.0  9.184432   1.815568213
## 721     10.2  8.174289   2.025710419
## 722      6.0  7.444742  -1.444742229
## 723      9.0 11.401133  -2.401133113
## 724      7.8  7.477119   0.322881688
## 725     13.8 13.693379   0.106621248
## 726      8.2 15.417960  -7.217960100
## 727      8.6  7.496544   1.103456031
## 728     11.2 13.907063  -2.707063450
## 729      8.0  7.142563   0.857437122
## 730     13.0  8.888728   4.111272247
## 731     18.6 14.455302   4.144698106
## 732      8.2  7.392940   0.807059805
## 733     17.0  9.935563   7.064436834
## 734      8.2  8.299478  -0.099478144
## 735      6.4  7.768506  -1.368505701
## 736     12.4 14.915047  -2.515047154
## 737      6.6  6.676343  -0.076343418
## 738     15.0 14.986275   0.013724848
## 739      9.0 10.507545  -1.507545386
## 740      5.4  7.923912  -2.523912168
## 741      7.0 16.281329  -9.281329423
## 742      6.8  8.103061  -1.303061231
## 743     14.5 14.543798  -0.043797618
## 744      8.8 14.472570  -5.672569870
## 745      7.0  7.522445  -0.522445411
## 746      6.2  6.611591  -0.411590784
## 747     10.6  8.871460   1.728540002
## 748      6.8  6.527412   0.272588122
## 749      6.8  8.992332  -2.192331806
## 750     16.0 16.065487  -0.065487045
## 751      7.2  7.332504  -0.132504387
## 752      7.6 15.204276  -7.604275688
## 753     11.6  9.816850   1.783150359
## 754     11.0 13.924330  -2.924330222
## 755      8.0  7.202999   0.797001313
## 756      5.4  6.333154  -0.933153838
## 757     11.6 12.825692  -1.225692101
## 758     11.2 13.689062  -2.489062187
## 759      7.4  7.466326  -0.066326351
## 760      6.4  7.669218  -1.269218199
## 761      7.0  7.067018  -0.067018066
## 762      4.2 14.770433 -10.570432964
## 763      8.8  7.330346   1.469654468
## 764      6.2  6.669868  -0.469868248
## 765      6.6  7.423158  -0.823158004
## 766      8.4  6.590006   1.809993243
## 767      4.0 11.314796  -7.314795833
## 768      7.0  8.113854  -1.113853582
## 769      8.0 11.066577  -3.066577180
## 770     20.0 12.063769   7.936230850
## 771     19.0 15.202118   3.797882469
## 772      5.4 10.673744  -5.273744021
## 773     24.6 16.706538   7.893462032
## 774      5.0  8.005932  -3.005932392
## 775     11.0  9.801741   1.198258878
## 776      5.0  8.882252  -3.882252334
## 777      8.6  7.224583   1.375417375
## 778     12.3 16.713014  -4.413013990
## 779      6.0  7.835417  -1.835416922
## 780     10.6  9.864335   0.735665184
## 781      7.0  6.641809   0.358191477
## 782     13.6 14.768274  -1.168273507
## 783      7.6 12.137156  -4.537155686
## 784     13.6 14.697046  -1.097045951
## 785      7.8  6.993632   0.806368566
## 786      6.8  7.967081  -1.167080508
## 787      5.4  7.155513  -1.755513313
## 788     10.0  9.937722   0.062278361
## 789      5.6  7.524604  -1.924603979
## 790      5.6  9.348472  -3.748472140
## 791     28.0 11.621292  16.378707973
## 792     10.0  7.518129   2.481871433
## 793      9.4  6.922404   2.477596014
## 794      5.2  8.157022  -2.957022207
## 795     14.0 10.496753   3.503246568
## 796      9.8 14.554590  -4.754590204
## 797      6.4  6.507986  -0.107986178
## 798      7.4  7.582881  -0.182881227
## 799      6.0  7.561297  -1.561297105
## 800      5.0 17.144699 -12.144698937
## 801      8.4  8.295161   0.104838406
## 802     17.4 11.925630   5.474369460
## 803      9.4  9.497403  -0.097403576
## 804      9.2 12.035709  -2.835709600
## 805     17.8 11.491787   6.308212308
## 806      7.0  9.419700  -2.419700013
## 807     11.0 11.707629  -0.707629307
## 808      6.4  6.434600  -0.034599762
## 809     11.0 10.401783   0.598217330
## 810      7.0  7.701595  -0.701594569
## 811     10.2  9.855702   0.344298093
## 812      9.2  9.424017  -0.224016944
## 813      6.2  7.362722  -1.162722291
## 814      8.0  7.308762   0.691238494
## 815      5.8  7.483594  -1.683593629
## 816     24.0 10.239901  13.760099114
## 817      8.0  7.030325   0.969675206
## 818      7.8  6.486402   1.313598161
## 819     20.8 13.259536   7.540463113
## 820      8.6 11.010458  -2.410457730
## 821     11.6 10.578773   1.021227027
## 822      6.6  7.425316  -0.825316477
## 823      8.6  7.464168   1.135832409
## 824     12.0 13.697696  -1.697695889
## 825      5.8  7.440425  -1.640425195
## 826      7.8  7.088602   0.711397907
## 827     10.4  9.989524   0.410475858
## 828     14.2 15.849645  -1.649644857
## 829      5.0  9.387324  -4.387323532
## 830      7.8 11.170182  -3.370181643
## 831      7.0  6.853334   0.146665942
## 832      7.0  8.979382  -1.979381569
## 833      8.0  7.505178   0.494821963
## 834      6.8  6.533887   0.266112857
## 835     19.6 12.454444   7.145556642
## 836     18.0 14.986275   3.013724848
## 837     14.2 12.050819   2.149181087
## 838     15.2 12.374582   2.825417519
## 839      5.0  6.372006  -1.372005563
## 840     17.6 15.202118   2.397882851
## 841     15.2 13.186150   2.013850127
## 842     24.8 17.360541   7.439457921
## 843      8.8 14.498471  -5.698470725
## 844      6.0  9.048451  -3.048451064
## 845      8.0  9.721879  -1.721879260
## 846      6.0  7.328187  -1.328187250
## 847      9.0  7.541871   1.458128742
## 848      5.6  7.967081  -2.367080794
## 849      9.4  9.527621  -0.127621583
## 850      7.0 12.394008  -5.394007725
## 851      8.0  6.680660   1.319339834
## 852      7.4  9.264293  -1.864293347
## 853     16.4 10.934914   5.465086010
## 854     12.0  9.212491   2.787508679
## 855      5.8  7.787932  -1.987931350
## 856     14.8  9.521146   5.278854408
## 857      4.0  8.152705  -4.152705276
## 858      8.0  6.253292   1.746707748
## 859      4.4  8.072843  -3.672843319
## 860     29.6 11.532797  18.067203697
## 861     11.2  9.657127   1.542873098
## 862     11.0  6.898661   4.101339034
## 863      4.2 11.316954  -7.116954497
## 864      6.8  9.370056  -2.570055968
## 865     13.8 14.261045  -0.461044438
## 866     14.0 14.986275  -0.986275152
## 867      5.2  7.852684  -2.652684486
## 868      5.4  6.510145  -1.110144599
## 869      7.4  6.393590   1.006410290
## 870     14.4 13.963182   0.436817703
## 871      8.2  6.449709   1.750291000
## 872      6.2  7.846209  -1.646209169
## 873      7.0  8.947005  -1.947005089
## 874     22.6 12.635751   9.964249011
## 875     12.8 15.199959  -2.399958455
## 876      7.7  7.995140  -0.295140423
## 877      6.6  7.459851  -0.859851225
## 878      7.0  7.077810  -0.077810124
## 879      5.2  8.273577  -3.073577083
## 880      5.8  7.421000  -1.620999348
## 881      7.0  7.764189  -0.764188953
## 882      5.9  7.906645  -2.006644795
## 883      9.8  6.516620   3.283380231
## 884      7.0 10.147089  -3.147088598
## 885      8.4  6.905136   1.494863388
## 886      4.4  8.981540  -4.581539741
## 887     22.0 15.204276   6.795724408
## 888      5.2 12.057294  -6.857293921
## 889      6.8  7.904486  -1.104486226
## 890      4.2  7.921754  -3.721753981
## 891      9.0  9.354947  -0.354947258
## 892      8.2 12.702662  -4.502662583
ggplot(triceps,aes(x=age, y=triceps)) +
                 geom_point(alpha=0.55, color="black") +
   stat_smooth(method = "lm", 
               formula = y~x,lty = 1,
               col = "blue",se = F)+
  theme_bw()

#Regresi Polinomial Derajat 2 (ordo 2)

mod_polinomial2 = lm(triceps ~ poly(age,2,raw = T),
                     data=triceps)
summary(mod_polinomial2)
## 
## Call:
## lm(formula = triceps ~ poly(age, 2, raw = T), data = triceps)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12.5677  -2.4401  -0.4587   1.6368  24.9961 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             6.0229191  0.3063806  19.658  < 2e-16 ***
## poly(age, 2, raw = T)1  0.2434733  0.0364403   6.681 4.17e-11 ***
## poly(age, 2, raw = T)2 -0.0006257  0.0007926  -0.789     0.43    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.008 on 889 degrees of freedom
## Multiple R-squared:  0.3377, Adjusted R-squared:  0.3362 
## F-statistic: 226.6 on 2 and 889 DF,  p-value: < 2.2e-16
ggplot(triceps,aes(x=age, y=triceps)) + 
  geom_point(alpha=0.55, color="black") +
  stat_smooth(method = "lm", 
               formula = y~poly(x,2,raw=T), 
               lty = 1, col = "blue",se = F)+
  theme_bw()

ggplot(triceps,aes(x=age, y=triceps)) + 
  geom_point(alpha=0.55, color="black") +
  stat_smooth(method = "lm", 
               formula = y~poly(x,2,raw=T), 
               lty = 1, col = "blue",se = T)+
  theme_bw()

#Regresi Polinomial Derajat 3 (ordo 3)

mod_polinomial3 = lm(triceps ~ poly(age,3,raw = T),data=triceps)
summary(mod_polinomial3)
## 
## Call:
## lm(formula = triceps ~ poly(age, 3, raw = T), data = triceps)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11.5832  -1.9284  -0.5415   1.3283  24.4440 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             8.004e+00  3.831e-01  20.893  < 2e-16 ***
## poly(age, 3, raw = T)1 -3.157e-01  7.721e-02  -4.089 4.73e-05 ***
## poly(age, 3, raw = T)2  3.101e-02  3.964e-03   7.824 1.45e-14 ***
## poly(age, 3, raw = T)3 -4.566e-04  5.612e-05  -8.135 1.38e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.868 on 888 degrees of freedom
## Multiple R-squared:  0.3836, Adjusted R-squared:  0.3815 
## F-statistic: 184.2 on 3 and 888 DF,  p-value: < 2.2e-16
ggplot(triceps,aes(x=age, y=triceps)) + 
  geom_point(alpha=0.55, color="black") +
  stat_smooth(method = "lm", 
               formula = y~poly(x,3,raw=T), 
               lty = 1, col = "blue",se = T)+
  theme_bw()

AIC(mod_linear)
## [1] 5011.515
AIC(mod_polinomial2)
## [1] 5012.89
AIC(mod_polinomial3)
## [1] 4950.774
MSE(predict(mod_linear), triceps$triceps)
## [1] 16.01758
MSE(predict(mod_polinomial2), triceps$triceps)
## [1] 16.00636
MSE(predict(mod_polinomial3), triceps$triceps)
## [1] 14.89621

#Regresi Fungsi Tangga (5)

mod_tangga5 = lm(triceps ~ cut(age,5),data=triceps)
summary(mod_tangga5)
## 
## Call:
## lm(formula = triceps ~ cut(age, 5), data = triceps)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.5474  -2.0318  -0.4465   1.3682  23.3759 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              7.2318     0.1994  36.260  < 2e-16 ***
## cut(age, 5)(10.6,20.9]   1.6294     0.3244   5.023 6.16e-07 ***
## cut(age, 5)(20.9,31.2]   5.9923     0.4222  14.192  < 2e-16 ***
## cut(age, 5)(31.2,41.5]   7.5156     0.4506  16.678  < 2e-16 ***
## cut(age, 5)(41.5,51.8]   7.4561     0.5543  13.452  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.939 on 887 degrees of freedom
## Multiple R-squared:  0.3617, Adjusted R-squared:  0.3588 
## F-statistic: 125.7 on 4 and 887 DF,  p-value: < 2.2e-16
ggplot(triceps,aes(x=age, y=triceps)) +
       geom_point(alpha=0.55, color="black") +
       stat_smooth(method = "lm", 
               formula = y~cut(x,5), 
               lty = 1, col = "blue",se = F)+
  theme_bw()

#Regresi Fungsi Tangga (7)

mod_tangga7 = lm(triceps ~ cut(age,7),data=triceps)
summary(mod_tangga7)
## 
## Call:
## lm(formula = triceps ~ cut(age, 7), data = triceps)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.8063  -1.7592  -0.4366   1.2894  23.1461 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              7.5592     0.2219  34.060  < 2e-16 ***
## cut(age, 7)(7.62,15]    -0.6486     0.3326  -1.950   0.0515 .  
## cut(age, 7)(15,22.3]     3.4534     0.4239   8.146 1.27e-15 ***
## cut(age, 7)(22.3,29.7]   5.8947     0.4604  12.804  < 2e-16 ***
## cut(age, 7)(29.7,37]     7.8471     0.5249  14.949  < 2e-16 ***
## cut(age, 7)(37,44.4]     6.9191     0.5391  12.835  < 2e-16 ***
## cut(age, 7)(44.4,51.8]   6.3013     0.6560   9.606  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.805 on 885 degrees of freedom
## Multiple R-squared:  0.4055, Adjusted R-squared:  0.4014 
## F-statistic: 100.6 on 6 and 885 DF,  p-value: < 2.2e-16
ggplot(triceps,aes(x=age, y=triceps)) +
       geom_point(alpha=0.55, color="black") +
       stat_smooth(method = "lm", 
               formula = y~cut(x,7), 
               lty = 1, col = "blue",se = F)+
  theme_bw()

#Perbandingan Model

MSE = function(pred,actual){
  mean((pred-actual)^2)
}

#membandingkan model (breaks 7 paling baik karena mse-nya paling kecil)

nilai_MSE <- rbind(MSE(predict(mod_linear),triceps$triceps),
              MSE(predict(mod_polinomial2),triceps$triceps),
              MSE(predict(mod_polinomial3),triceps$triceps),
              MSE(predict(mod_tangga5),triceps$triceps),
              MSE(predict(mod_tangga7),triceps$triceps))
nama_model <- c("Linear","Poly (ordo=2)", "Poly (ordo=3)",
                "Tangga (breaks=5)", "Tangga (breaks=7)")
data.frame(nama_model,nilai_MSE)
##          nama_model nilai_MSE
## 1            Linear  16.01758
## 2     Poly (ordo=2)  16.00636
## 3     Poly (ordo=3)  14.89621
## 4 Tangga (breaks=5)  15.42602
## 5 Tangga (breaks=7)  14.36779

#Evaluasi Model Menggunakan Cross Validation

#Regresi Linear

set.seed(123)
cross_val <- vfold_cv(triceps,v=10,strata = "triceps")
metric_linear <- map_dfr(cross_val$splits,
    function(x){
    mod <- lm(triceps ~ age,data=triceps[x$in_id,])
    pred <- predict(mod,newdata=triceps[-x$in_id,])
    truth <- triceps[-x$in_id,]$triceps
    rmse <- mlr3measures::rmse(truth = truth,response = pred)
    mae <- mlr3measures::mae(truth = truth,response = pred)
    metric <- c(rmse,mae)
    names(metric) <- c("rmse","mae")
    return(metric)
  }
)
metric_linear
## # A tibble: 10 x 2
##     rmse   mae
##    <dbl> <dbl>
##  1  3.65  2.82
##  2  4.62  3.22
##  3  4.38  3.00
##  4  3.85  2.80
##  5  3.08  2.36
##  6  3.83  2.81
##  7  3.59  2.78
##  8  4.66  3.06
##  9  3.50  2.56
## 10  4.59  2.93
# menghitung rata-rata untuk 10 folds
mean_metric_linear <- colMeans(metric_linear)
mean_metric_linear
##     rmse      mae 
## 3.973249 2.833886

#Polynomial Derajat 2 (ordo 2)

set.seed(123)
cross_val <- vfold_cv(triceps,v=10,strata = "triceps") #V(lipatan) biasa dipakai 10 dan 5
metric_poly2 <- map_dfr(cross_val$splits,
function(x){
  mod <- lm(triceps ~ poly(age,2,raw = T),data=triceps[x$in_id,])
  pred <- predict(mod,newdata=triceps[-x$in_id,])
  truth <- triceps[-x$in_id,]$triceps
  rmse <- mlr3measures::rmse(truth = truth,response = pred)
  mae <- mlr3measures::mae(truth = truth,response = pred)
  metric <- c(rmse,mae)
  names(metric) <- c("rmse","mae") #mae absolut
  return(metric)
  }
)
metric_poly2
## # A tibble: 10 x 2
##     rmse   mae
##    <dbl> <dbl>
##  1  3.64  2.82
##  2  4.62  3.26
##  3  4.39  3.02
##  4  3.85  2.81
##  5  3.10  2.38
##  6  3.82  2.81
##  7  3.62  2.83
##  8  4.65  3.07
##  9  3.50  2.57
## 10  4.59  2.94
# menghitung rata-rata untuk 10 folds
mean_metric_poly2 <- colMeans(metric_poly2)
mean_metric_poly2
##     rmse      mae 
## 3.977777 2.851787

#Polynomial Derajat 3 (ordo 3)

set.seed(123)
cross_val <- vfold_cv(triceps,v=10,strata = "triceps")

metric_poly3 <- map_dfr(cross_val$splits,
function(x){
  mod <- lm(triceps ~ poly(age,3,raw = T),data=triceps[x$in_id,])
  pred <- predict(mod,newdata=triceps[-x$in_id,])
  truth <- triceps[-x$in_id,]$triceps
  rmse <- mlr3measures::rmse(truth = truth,response = pred)
  mae <- mlr3measures::mae(truth = truth,response = pred)
  metric <- c(rmse,mae)
  names(metric) <- c("rmse","mae")
  return(metric)
  }
)
metric_poly3
## # A tibble: 10 x 2
##     rmse   mae
##    <dbl> <dbl>
##  1  3.49  2.60
##  2  4.48  2.99
##  3  4.21  2.85
##  4  4.02  2.75
##  5  3.03  2.09
##  6  3.63  2.59
##  7  3.53  2.52
##  8  4.54  2.91
##  9  3.27  2.33
## 10  4.27  2.68
# menghitung rata-rata untuk 10 folds
mean_metric_poly3 <- colMeans(metric_poly3)
mean_metric_poly3
##     rmse      mae 
## 3.845976 2.632125

#Fungsi Tangga

set.seed(123)
cross_val <- vfold_cv(triceps,v=10,strata = "triceps")
breaks <- 3:10 #titik cut nya
best_tangga <- map_dfr(breaks, function(i){
    metric_tangga <- map_dfr(cross_val$splits,
    function(x){
        training <- triceps[x$in_id,]
        training$age <- cut(training$age,i)
        mod <- lm(triceps ~ age,data=training)
        labs_x <- levels(mod$model[,2])
        labs_x_breaks <- cbind(lower = as.numeric( sub("\\((.+),.*", "\\1", labs_x) ),
                  upper = as.numeric( sub("[^,]*,([^]]*)\\]", "\\1", labs_x) ))
        testing <- triceps[-x$in_id,]
        age_new <- cut(testing$age,c(labs_x_breaks[1,1],labs_x_breaks[,2]))
        pred <- predict(mod,newdata=list(age=age_new))
        truth <- testing$triceps
        data_eval <- na.omit(data.frame(truth,pred))
        rmse <- mlr3measures::rmse(truth = data_eval$truth,response = data_eval$pred)
        mae <- mlr3measures::mae(truth = data_eval$truth,response = data_eval$pred)
        metric <- c(rmse,mae)
        names(metric) <- c("rmse","mae")
        return(metric)
      }
    )
  metric_tangga
  # menghitung rata-rata untuk 10 folds
  mean_metric_tangga <- colMeans(metric_tangga)
  mean_metric_tangga
  }
)

best_tangga <- cbind(breaks=breaks,best_tangga)
# menampilkan hasil all breaks
best_tangga
##   breaks     rmse      mae
## 1      3 3.835357 2.618775
## 2      4 3.882932 2.651911
## 3      5 3.917840 2.724368
## 4      6 3.836068 2.622939
## 5      7 3.789715 2.555062
## 6      8 3.812789 2.555563
## 7      9 3.781720 2.518706
## 8     10 3.795877 2.529479
#berdasarkan rmse terkecil
best_tangga %>% slice_min(rmse)
##   breaks    rmse      mae
## 1      9 3.78172 2.518706
#berdasarkan mae terkecil
best_tangga %>% slice_min(mae)
##   breaks    rmse      mae
## 1      9 3.78172 2.518706

#Perbandingan Model

nilai_metric <- rbind(mean_metric_linear,
                      mean_metric_poly2,
                      mean_metric_poly3,
                      best_tangga %>% select(-1) %>% slice_min(mae))

nama_model <- c("Linear","Poly2","Poly3","Tangga (breaks=9)")
data.frame(nama_model,nilai_metric)
##          nama_model     rmse      mae
## 1            Linear 3.973249 2.833886
## 2             Poly2 3.977777 2.851787
## 3             Poly3 3.845976 2.632125
## 4 Tangga (breaks=9) 3.781720 2.518706