Year Snow 1970 6.5 1971 12.0 1972 14.9 1973 10.0 1974 10.7 1975 7.9 1976 21.9 1977 12.5 1978 14.5 1979 9.2
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Snow = c(6.5, 12.0, 14.9, 10.0, 10.7, 7.9, 21.9, 12.5, 14.5,9.2)
Year = 1970:1979
Snow.df = data.frame(Year, Snow)
head(Snow.df)
## Year Snow
## 1 1970 6.5
## 2 1971 12.0
## 3 1972 14.9
## 4 1973 10.0
## 5 1974 10.7
## 6 1975 7.9
Mean = mean(Snow)
Mean
## [1] 12.01
Median = median(Snow)
Median
## [1] 11.35
SD= sd(Snow)
SD
## [1] 4.390761
Sum = sum(Snow>10)
Sum
## [1] 6
head(rivers)
## [1] 735 320 325 392 524 450
n = length(rivers)
n
## [1] 141
Prop = sum(rivers < 500) / n
Prop
## [1] 0.5815603
Mean = mean(rivers)
PropS = sum(rivers < Mean)/ n ## n = Total Numbers of major rivers in the data vector
PropS
## [1] 0.6666667
percentile_75 = quantile(rivers, probs = c(0.75))
percentile_75
## 75%
## 680
IQR = IQR(rivers)
IQR
## [1] 370
library(dplyr)
library(hflights)
flights.df = data.frame(hflights)
Sept.df = flights.df %>%
filter(Month ==9 & DayofMonth == 11)
head(Sept.df)
## Year Month DayofMonth DayOfWeek DepTime ArrTime UniqueCarrier FlightNum
## 1 2011 9 11 7 1546 1651 AA 458
## 2 2011 9 11 7 551 904 AA 466
## 3 2011 9 11 7 1936 2036 AA 657
## 4 2011 9 11 7 1438 1544 AA 742
## 5 2011 9 11 7 1720 2030 AA 1294
## 6 2011 9 11 7 1142 1258 AA 1848
## TailNum ActualElapsedTime AirTime ArrDelay DepDelay Origin Dest Distance
## 1 N559AA 65 40 -14 -4 IAH DFW 224
## 2 N3EGAA 133 115 -16 -9 IAH MIA 964
## 3 N498AA 60 40 -19 -4 IAH DFW 224
## 4 N470AA 66 43 9 18 IAH DFW 224
## 5 N3BVAA 130 118 -20 -5 IAH MIA 964
## 6 N598AA 76 40 -2 -3 IAH DFW 224
## TaxiIn TaxiOut Cancelled CancellationCode Diverted
## 1 12 13 0 0
## 2 5 13 0 0
## 3 8 12 0 0
## 4 6 17 0 0
## 5 5 7 0 0
## 6 22 14 0 0
count(Sept.df)
## n
## 1 602
Depfli.df = hflights %>%
group_by(TailNum) %>%
summarize(Dep = n()) %>%
arrange(desc(Dep))
head(Depfli.df)
## # A tibble: 6 × 2
## TailNum Dep
## <chr> <int>
## 1 N14945 971
## 2 N15926 960
## 3 N16927 951
## 4 N12946 948
## 5 N14937 946
## 6 N14942 946
data = read.table(file = "C:/SpatialStatistics/Tornadoes.txt", header = TRUE)
Tornado.df = data.frame(data)
Kankas.df = Tornado.df %>%
select(YEAR, STATE, STATENUMBE) %>%
filter(STATE == "KS")
head(Kankas.df)
## YEAR STATE STATENUMBE
## 58 1950 KS 1
## 73 1950 KS 2
## 79 1950 KS 3
## 80 1950 KS 4
## 86 1950 KS 5
## 87 1950 KS 6
Answer.df = select(Kankas.df, YEAR, STATENUMBE)
head(Answer.df)
## YEAR STATENUMBE
## 58 1950 1
## 73 1950 2
## 79 1950 3
## 80 1950 4
## 86 1950 5
## 87 1950 6