# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("RTX", "GD", "LMT", "BA")
stock_prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
ar_table <- stock_prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- ar_table %>% distinct(asset) %>% pull()
symbols
## [1] "BA" "GD" "LMT" "RTX"
# weights
weights <- c(0.35, 0.30, 0.20, 0.15)
weights
## [1] 0.35 0.30 0.20 0.15
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 BA 0.35
## 2 GD 0.3
## 3 LMT 0.2
## 4 RTX 0.15
portfolio_returns_table <- ar_table %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = ("returns"))
portfolio_returns_table
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 -0.0224
## 2 2013-02-28 0.0349
## 3 2013-03-28 0.0727
## 4 2013-04-30 0.0405
## 5 2013-05-31 0.0642
## 6 2013-06-28 0.0184
## 7 2013-07-31 0.0764
## 8 2013-08-30 -0.0114
## 9 2013-09-30 0.0773
## 10 2013-10-31 0.0423
## # … with 50 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_table %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 -0.355
# Calculate sd of portfolio returns
sd_portfolio <- sd(portfolio_returns_table$returns)
mean_portfolio <- mean(portfolio_returns_table$returns)
portfolio_returns_table %>%
# Add a new variable
mutate(extreme_neg = ifelse(returns < mean_portfolio - 2 * sd_portfolio, "ext_neg", "not_ext_neg")) %>%
ggplot(aes(x = returns, fill = extreme_neg)) +
geom_histogram(binwidth = 0.003) +
scale_x_continuous(breaks = seq(-0.06, 0.06, 0.02)) +
labs(x = "montly returns")
# Data transformation: calculate skewness
asset_skewness_tbl <- ar_table %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# Add portfolio skewness
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_table$returns)))
asset_skewness_tbl
## # A tibble: 5 × 2
## asset skew
## <chr> <dbl>
## 1 BA -0.310
## 2 GD 0.385
## 3 LMT -0.240
## 4 RTX -0.144
## 5 Portfolio -0.355
#Plot skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_skewness_tbl %>%
filter(asset == "Portfolio")) +
labs(y = "skewness")
Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.
From the plot, you can see that GD is the only stock witha positive skewness out of the 4 stocks. Also, if we look at the plot from section 4, we can see that the peak of GD is to the right of zero and is at about 0.09. From these two graphs, it can be said with a high degree of certainty that GD will produce extreme positive returns more frequently and extreme negative returns less frequently than the other stocks.