# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("NFLX", "AAPL", "TSLA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol)%>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl%>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "NFLX" "TSLA"
# weights
weights <- c(.25, .25, .2)
weights
## [1] 0.25 0.25 0.20
w_tble <- tibble(symbols, weights)
w_tble
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 NFLX 0.25
## 3 TSLA 0.2
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tble,
rebalance_on ="months",
col_rename = "Returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date Returns
## <date> <dbl>
## 1 2013-01-31 0.126
## 2 2013-02-28 0.0111
## 3 2013-03-28 0.0191
## 4 2013-04-30 0.104
## 5 2013-05-31 0.136
## 6 2013-06-28 -0.0301
## 7 2013-07-31 0.114
## 8 2013-08-30 0.103
## 9 2013-09-30 0.0429
## 10 2013-10-31 -0.00445
## # … with 50 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = Returns,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 -0.0647
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# Add portfolio skewness
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$Returns)))
asset_skewness_tbl
## # A tibble: 4 × 2
## asset skew
## <chr> <dbl>
## 1 AAPL -0.555
## 2 NFLX 0.909
## 3 TSLA 0.944
## 4 Portfolio -0.0647
# Plot skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y =skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_skewness_tbl %>%
filter(asset == "Portfolio")) +
labs(y = "skewness")
Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.
Tesla is more likely to return extreme positive but the skewness is really high which is not necessarily a good thing when referring to stocks.