# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("ETSY", "AMZN", "ACL", "AMD", "NVDA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "ACL" "AMD" "AMZN" "ETSY" "NVDA"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 Ă— 2
## symbols weights
## <chr> <dbl>
## 1 ACL 0.25
## 2 AMD 0.25
## 3 AMZN 0.2
## 4 ETSY 0.2
## 5 NVDA 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 Ă— 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0149
## 2 2013-02-28 -0.00791
## 3 2013-03-28 0.00252
## 4 2013-04-30 0.0159
## 5 2013-05-31 0.102
## 6 2013-06-28 0.00588
## 7 2013-07-31 -0.0196
## 8 2013-08-30 -0.0594
## 9 2013-09-30 0.0377
## 10 2013-10-31 0.0171
## # … with 50 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 Ă— 1
## Skewness
## <dbl>
## 1 -0.0649
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# Add portfolio skewness
add_row(tibble(asset = "portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
# Plot skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_skewness_tbl %>%
filter(asset == "portfolio")) +
labs(y = "skewness")
Is any asset in your portfolio more likely to return extreme positive
returns than your portfolio collectively? Discuss in terms of skewness.
You may also refer to the distribution of returns you plotted in Code
along 4.
ACL is most likely to make an extreme positive return, this is due to it’s skewness being over 1.1.