# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("MCD", "WEN", "YUM", "DPZ", "SBUX")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2020-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "DPZ" "MCD" "SBUX" "WEN" "YUM"
# weights
weights <- c(0.2, 0.2, 0.2, 0.2, 0.2)
weights
## [1] 0.2 0.2 0.2 0.2 0.2
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 DPZ 0.2
## 2 MCD 0.2
## 3 SBUX 0.2
## 4 WEN 0.2
## 5 YUM 0.2
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 96 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0524
## 2 2013-02-28 0.0273
## 3 2013-03-28 0.0496
## 4 2013-04-30 0.0226
## 5 2013-05-31 0.0218
## 6 2013-06-28 0.00976
## 7 2013-07-31 0.0804
## 8 2013-08-30 -0.00594
## 9 2013-09-30 0.0690
## 10 2013-10-31 0.00341
## # … with 86 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 -0.420
# Data transformation: calculate skewness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# Add portfolio skewness
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_skewness_tbl
## # A tibble: 6 × 2
## asset skew
## <chr> <dbl>
## 1 DPZ -0.106
## 2 MCD -0.384
## 3 SBUX -0.440
## 4 WEN 0.207
## 5 YUM -0.569
## 6 Portfolio -0.420
# Plot skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_skewness_tbl %>%
filter(asset == "Portfolio")) +
labs(y = "skewness")
Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.
My portfolio as a whole reflects a relatively symmetrical distribution, falling at a skewness of just under -.4. In order to be considered negatively skewed, it would need to fall lower than -.5. The only asset in my portfolio that can be considered skewed is that of YUM, which represents Taco bell company and their other associated food chains. The skewness for YUM falls at almost, but not quite, -.6. This is not a very extreme skew, but is does show an outlying amount of negative returns. Falling at a skewness of positive .2, WEN is the only individual asset of the portfolio to show any propensity for positive returns; however, not enough to be considered technically skewed as it is under .5.