Regresion logistica para muestra unificada (13 de octubre)

El diseño muestral es el que se logró armar considerando los diseños de cada país Finalmente se trabaja con un diseño equivalente a 2 etapas, primera donde las psu son las escuelas, el pais es la variable de estratificación y se usan como pesos muestrales los que se consideraron en Uruguay (ver diseño de Uruguay y para POA se creó un nuevo vector de peso usando como variables de ajuste distribucion por sexo y por tipo de escuela)

Preciso que me tires una multiple con aquellas variables que son tiene un p valor <=0,10: 1) País 2) Sociecinómico 4cat 3) Escolmae cat 23 cat 4) Visitacatonde 5) visiquando 6) frecuenciaescovacat 7)Isg 45% 8) tipo de escuela





library(survey)
## Attaching package: 'survey'
## 
## The following object(s) are masked from 'package:graphics':
## 
## dotchart
library(car)
## Loading required package: MASS Loading required package: nnet
# 28 de octubre 2013

load("~/Dropbox/odontologia/maestria_anunziatta/BancoUnidoBrasUru/BRASURU(28102013).RData")

levels(disenio_urubra$variables$prevoms)
## [1] "1-SinCavi" "2-conCavi"
table(disenio_urubra$variables$cpodoms, disenio_urubra$variables$prevoms)
##     
##      1-SinCavi 2-conCavi
##   0       1105         0
##   1          0       495
##   2          0       404
##   3          0       259
##   4          0       217
##   5          0       108
##   6          0        38
##   7          0        22
##   8          0        14
##   9          0        12
##   10         0         3
##   11         0         3
##   14         0         1
##   15         0         1

modelo2multi.bin <- svyglm(prevoms ~ pais + socioecon4cat + escolmaerecat23cat + 
    visidentcatonde + visiquando + freqescovacat + isg45 + tipoesc, disenio_urubra, 
    family = quasibinomial())
summary(modelo2multi.bin)
## 
## Call:
## svyglm(formula = prevoms ~ pais + socioecon4cat + escolmaerecat23cat + 
##     visidentcatonde + visiquando + freqescovacat + isg45 + tipoesc, 
##     disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                        Estimate Std. Error t value
## (Intercept)                              -0.759      0.258   -2.93
## paisUru                                   0.604      0.130    4.65
## socioecon4cat2-medio-alto                 0.442      0.256    1.73
## socioecon4cat3-medio-bajo                 0.604      0.261    2.32
## socioecon4cat4-bajo                       0.746      0.325    2.30
## escolmaerecat23cat2-high school           0.148      0.212    0.70
## escolmaerecat23cat3-elementary school     0.477      0.261    1.83
## visidentcatonde2-Publico                  0.497      0.150    3.32
## visidentcatonde3-Nunca fue al dentista   -0.498      0.866   -0.58
## visiquando2- m\xe1s de 2 a\xf1os         -0.282      0.148   -1.91
## visiquando3- nunca fue                    0.524      0.870    0.60
## freqescovacat2-veces al d\xeda           -0.185      0.144   -1.28
## freqescovacat3-veces al d\xeda           -0.335      0.170   -1.97
## isg452- 45 a 60                           0.134      0.127    1.05
## isg453- >=60                              0.517      0.130    3.96
## tipoesc2-Publica                          0.120      0.163    0.73
##                                        Pr(>|t|)    
## (Intercept)                             0.00459 ** 
## paisUru                                 1.7e-05 ***
## socioecon4cat2-medio-alto               0.08914 .  
## socioecon4cat3-medio-bajo               0.02364 *  
## socioecon4cat4-bajo                     0.02476 *  
## escolmaerecat23cat2-high school         0.48899    
## escolmaerecat23cat3-elementary school   0.07205 .  
## visidentcatonde2-Publico                0.00149 ** 
## visidentcatonde3-Nunca fue al dentista  0.56709    
## visiquando2- m\xe1s de 2 a\xf1os        0.06108 .  
## visiquando3- nunca fue                  0.54874    
## freqescovacat2-veces al d\xeda          0.20432    
## freqescovacat3-veces al d\xeda          0.05285 .  
## isg452- 45 a 60                         0.29587    
## isg453- >=60                            0.00018 ***
## tipoesc2-Publica                        0.46593    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9922)
## 
## Number of Fisher Scoring iterations: 4
anova(modelo2multi.bin)
## Anova table:  (Rao-Scott LRT)
## svyglm(formula = prevoms ~ pais, disenio_urubra, family = quasibinomial())
##                     stats   DEff     df ddf       p    
## pais                 9.85   3.22   1.00  80  0.0865 .  
## socioecon4cat      146.93   2.18   3.00  77 6.1e-09 ***
## escolmaerecat23cat  88.02   2.02   2.00  75 1.7e-06 ***
## visidentcatonde     52.00   1.28   2.00  73 1.1e-06 ***
## visiquando          37.49   1.28   2.00  71 1.7e-05 ***
## freqescovacat       59.55   1.82   2.00  69 5.0e-06 ***
## isg45               16.99   1.05   2.00  67  0.0013 ** 
## tipoesc              1.07   1.99   1.00  66  0.4652    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(modelo2multi.bin)
##                                           2.5 %    97.5 %
## (Intercept)                            -1.26516 -0.251940
## paisUru                                 0.34942  0.858957
## socioecon4cat2-medio-alto              -0.06009  0.943995
## socioecon4cat3-medio-bajo               0.09295  1.114449
## socioecon4cat4-bajo                     0.10959  1.381798
## escolmaerecat23cat2-high school        -0.26839  0.563851
## escolmaerecat23cat3-elementary school  -0.03439  0.987989
## visidentcatonde2-Publico                0.20308  0.790188
## visidentcatonde3-Nunca fue al dentista -2.19437  1.198565
## visiquando2- m\xe1s de 2 a\xf1os       -0.57115  0.008055
## visiquando3- nunca fue                 -1.18060  2.229223
## freqescovacat2-veces al d\xeda         -0.46771  0.097807
## freqescovacat3-veces al d\xeda         -0.66810 -0.001982
## isg452- 45 a 60                        -0.11525  0.383237
## isg453- >=60                            0.26140  0.772929
## tipoesc2-Publica                       -0.20036  0.439942
exp(modelo2multi.bin$coefficients)
##                            (Intercept) 
##                                 0.4683 
##                                paisUru 
##                                 1.8298 
##              socioecon4cat2-medio-alto 
##                                 1.5557 
##              socioecon4cat3-medio-bajo 
##                                 1.8289 
##                    socioecon4cat4-bajo 
##                                 2.1079 
##        escolmaerecat23cat2-high school 
##                                 1.1592 
##  escolmaerecat23cat3-elementary school 
##                                 1.6109 
##               visidentcatonde2-Publico 
##                                 1.6432 
## visidentcatonde3-Nunca fue al dentista 
##                                 0.6078 
##       visiquando2- m\xe1s de 2 a\xf1os 
##                                 0.7546 
##                 visiquando3- nunca fue 
##                                 1.6893 
##         freqescovacat2-veces al d\xeda 
##                                 0.8311 
##         freqescovacat3-veces al d\xeda 
##                                 0.7153 
##                        isg452- 45 a 60 
##                                 1.1434 
##                           isg453- >=60 
##                                 1.6773 
##                       tipoesc2-Publica 
##                                 1.1273


modelo3multi.bin <- svyglm(prevoms ~ pais + escolmaerecat23cat + visidentcatonde + 
    freqescovacat + isg45 + tipoesc, disenio_urubra, family = quasibinomial())
summary(modelo3multi.bin)
## 
## Call:
## svyglm(formula = prevoms ~ pais + escolmaerecat23cat + visidentcatonde + 
##     freqescovacat + isg45 + tipoesc, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                        Estimate Std. Error t value
## (Intercept)                              -0.611      0.212   -2.88
## paisUru                                   0.616      0.121    5.08
## escolmaerecat23cat2-high school           0.287      0.196    1.47
## escolmaerecat23cat3-elementary school     0.640      0.237    2.70
## visidentcatonde2-Publico                  0.562      0.137    4.10
## visidentcatonde3-Nunca fue al dentista    0.178      0.133    1.33
## freqescovacat2-veces al d\xeda           -0.184      0.129   -1.42
## freqescovacat3-veces al d\xeda           -0.337      0.167   -2.01
## isg452- 45 a 60                           0.150      0.131    1.15
## isg453- >=60                              0.545      0.134    4.06
## tipoesc2-Publica                          0.257      0.163    1.58
##                                        Pr(>|t|)    
## (Intercept)                             0.00520 ** 
## paisUru                                 2.9e-06 ***
## escolmaerecat23cat2-high school         0.14727    
## escolmaerecat23cat3-elementary school   0.00861 ** 
## visidentcatonde2-Publico                0.00011 ***
## visidentcatonde3-Nunca fue al dentista  0.18627    
## freqescovacat2-veces al d\xeda          0.15934    
## freqescovacat3-veces al d\xeda          0.04778 *  
## isg452- 45 a 60                         0.25404    
## isg453- >=60                            0.00012 ***
## tipoesc2-Publica                        0.11886    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9954)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo3multi.bin)
##                                           2.5 %    97.5 %
## (Intercept)                            -1.02546 -0.195591
## paisUru                                 0.37862  0.853820
## escolmaerecat23cat2-high school        -0.09675  0.669904
## escolmaerecat23cat3-elementary school   0.17587  1.104466
## visidentcatonde2-Publico                0.29298  0.830816
## visidentcatonde3-Nunca fue al dentista -0.08329  0.438796
## freqescovacat2-veces al d\xeda         -0.43792  0.069626
## freqescovacat3-veces al d\xeda         -0.66429 -0.009062
## isg452- 45 a 60                        -0.10581  0.406216
## isg453- >=60                            0.28214  0.807585
## tipoesc2-Publica                       -0.06197  0.575120
exp(modelo3multi.bin$coefficients)
##                            (Intercept) 
##                                 0.5431 
##                                paisUru 
##                                 1.8519 
##        escolmaerecat23cat2-high school 
##                                 1.3319 
##  escolmaerecat23cat3-elementary school 
##                                 1.8968 
##               visidentcatonde2-Publico 
##                                 1.7540 
## visidentcatonde3-Nunca fue al dentista 
##                                 1.1945 
##         freqescovacat2-veces al d\xeda 
##                                 0.8318 
##         freqescovacat3-veces al d\xeda 
##                                 0.7141 
##                        isg452- 45 a 60 
##                                 1.1621 
##                           isg453- >=60 
##                                 1.7244 
##                       tipoesc2-Publica 
##                                 1.2925
anova(modelo3multi.bin)
## Anova table:  (Rao-Scott LRT)
## svyglm(formula = prevoms ~ pais, disenio_urubra, family = quasibinomial())
##                     stats   DEff     df ddf       p    
## pais                 9.85   3.22   1.00  80 0.08646 .  
## escolmaerecat23cat 175.44   1.69   2.00  78 1.4e-12 ***
## visidentcatonde     68.50   1.38   2.00  76 6.7e-08 ***
## freqescovacat       63.42   1.80   2.00  74 4.4e-06 ***
## isg45               20.33   1.11   2.00  72 0.00071 ***
## tipoesc              5.45   2.19   1.00  71 0.12190    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(modelo3multi.bin, modelo2multi.bin)
## Working (Rao-Scott+F) LRT for socioecon4cat visiquando
##  in svyglm(formula = prevoms ~ pais + socioecon4cat + escolmaerecat23cat + 
##     visidentcatonde + visiquando + freqescovacat + isg45 + tipoesc, 
##     disenio_urubra, family = quasibinomial())
## Working 2logLR =  38.46 p= 0.00014 
## (scale factors:  2 1.4 0.61 0.54 0.44 );  denominator df= 66

modelo4multi.bin <- svyglm(prevoms ~ pais + escolmaerecat23cat + freqescovacat + 
    isg45, disenio_urubra, family = quasibinomial())
summary(modelo4multi.bin)
## 
## Call:
## svyglm(formula = prevoms ~ pais + escolmaerecat23cat + freqescovacat + 
##     isg45, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)                             -0.418      0.213   -1.96   0.0536
## paisUru                                  0.666      0.120    5.56  4.1e-07
## escolmaerecat23cat2-high school          0.483      0.158    3.06   0.0031
## escolmaerecat23cat3-elementary school    0.977      0.178    5.50  5.1e-07
## freqescovacat2-veces al d\xeda          -0.272      0.136   -2.00   0.0496
## freqescovacat3-veces al d\xeda          -0.409      0.156   -2.62   0.0106
## isg452- 45 a 60                          0.207      0.132    1.57   0.1214
## isg453- >=60                             0.619      0.146    4.24  6.3e-05
##                                          
## (Intercept)                           .  
## paisUru                               ***
## escolmaerecat23cat2-high school       ** 
## escolmaerecat23cat3-elementary school ***
## freqescovacat2-veces al d\xeda        *  
## freqescovacat3-veces al d\xeda        *  
## isg452- 45 a 60                          
## isg453- >=60                          ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.002)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo4multi.bin)
##                                          2.5 %     97.5 %
## (Intercept)                           -0.83630 -0.0002948
## paisUru                                0.43092  0.9005478
## escolmaerecat23cat2-high school        0.17356  0.7928739
## escolmaerecat23cat3-elementary school  0.62892  1.3249564
## freqescovacat2-veces al d\xeda        -0.53926 -0.0049417
## freqescovacat3-veces al d\xeda        -0.71529 -0.1035642
## isg452- 45 a 60                       -0.05187  0.4654884
## isg453- >=60                           0.33336  0.9052886
exp(modelo4multi.bin$coefficients)
##                           (Intercept) 
##                                0.6582 
##                               paisUru 
##                                1.9459 
##       escolmaerecat23cat2-high school 
##                                1.6213 
## escolmaerecat23cat3-elementary school 
##                                2.6563 
##        freqescovacat2-veces al d\xeda 
##                                0.7618 
##        freqescovacat3-veces al d\xeda 
##                                0.6640 
##                       isg452- 45 a 60 
##                                1.2297 
##                          isg453- >=60 
##                                1.8577
anova(modelo4multi.bin)
## Anova table:  (Rao-Scott LRT)
## svyglm(formula = prevoms ~ pais, disenio_urubra, family = quasibinomial())
##                     stats   DEff     df ddf       p    
## pais                 9.85   3.22   1.00  80 0.08646 .  
## escolmaerecat23cat 175.44   1.69   2.00  78 1.4e-12 ***
## freqescovacat       66.45   1.72   2.00  76 7.7e-07 ***
## isg45               24.57   1.21   2.00  74 0.00043 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(modelo4multi.bin, modelo3multi.bin)
## Working (Rao-Scott+F) LRT for visidentcatonde tipoesc
##  in svyglm(formula = prevoms ~ pais + escolmaerecat23cat + visidentcatonde + 
##     freqescovacat + isg45 + tipoesc, disenio_urubra, family = quasibinomial())
## Working 2logLR =  40.78 p= 1.1e-05 
## (scale factors:  1.7 0.8 0.5 );  denominator df= 71