Load Packages

library(tidyverse)
library(codebookr)
library(summarytools)
library(broom)
library(performance)
library(gt)
library(gtsummary)
library(janitor)
library(forcats)
library(here)
library(yaml)

Import Data

vax_deid <- read_csv("~/Desktop/R-Code/SDOH_Vax/ibd_vax.csv", show_col_types = FALSE)

ages <- read_csv("~/Desktop/R-Code/SDOH_Vax/sbj_id_age_years.csv", show_col_types = FALSE)

vax_deid_age <- left_join(vax_deid, ages)
Joining, by = "sbj_id"

Data Cleaning

RPL_THEMES Erroneous values

vax_deid_age %>%
  select(age_yrs, PATIENT_GENDER_CD, PATIENT_RACE_DESC, PATIENT_ETHNIC_GROUP_DESC, PATIENT_LANGUAGE_DESC, PATIENT_RELIGION_DESC, PATIENT_MARITAL_STATUS_DESC, STATE, AREA_SQMI, E_TOTPOP, RPL_THEMES, RPL_THEME1, RPL_THEME2, RPL_THEME3, RPL_THEME4, F_THEME1, F_THEME2, F_THEME3, F_THEME4, F_TOTAL, r_pct, flu_2015, flu_2016, flu_2017, flu_2018, flu_2019, flu_2020, flu_2021, flu_2022, total_flu, prevnar, pvax, any_pneum, both_pneum, total_cov_vax, total_shingrix) -> vaxdf
vaxdf %>%
mutate(RPL_THEMES = na_if(RPL_THEMES, "-999")) %>%
mutate(RPL_THEMES = na_if(RPL_THEMES, "0")) %>%
mutate(RPL_THEME1 = na_if(RPL_THEME1, "-999")) %>%
mutate(RPL_THEME1 = na_if(RPL_THEME1, "0")) %>%
mutate(RPL_THEME2 = na_if(RPL_THEME2, "-999")) %>%
mutate(RPL_THEME2 = na_if(RPL_THEME2, "0")) %>%
mutate(RPL_THEME3 = na_if(RPL_THEME3, "-999")) %>%
mutate(RPL_THEME3 = na_if(RPL_THEME3, "0")) %>%
mutate(RPL_THEME4 = na_if(RPL_THEME4, "-999")) %>%
mutate(RPL_THEME4 = na_if(RPL_THEME4, "0")) %>% 
mutate(F_TOTAL = na_if(F_TOTAL, "-999")) %>%
mutate(F_THEME1 = na_if(F_THEME1, "-999")) %>%
mutate(F_THEME2 = na_if(F_THEME2, "-999")) %>%
mutate(F_THEME3 = na_if(F_THEME3, "-999")) %>%
mutate(F_THEME4 = na_if(F_THEME4, "-999")) -> vaxdfTheme

Marital status

vaxdfTheme %>% 
mutate(mstat_5 = as_factor(PATIENT_MARITAL_STATUS_DESC),
         mstat_5 = fct_recode(mstat_5, div_sep = "DIVORCED",
                              div_sep = "LEGALLY SEPARATED", widow = "WIDOWED",
                              married = "MARRIED", unmarried = "SINGLE",
                              unknown = "UNKNOWN", unknown = "OTHER",
                              unmarried = "SIGNIFICANT OTHER"),
         mstat_5 = fct_relevel(mstat_5, ref = 'married')) -> vaxdfThemeMs

Religion

vaxdfThemeMs %>% 
  mutate(relig_affil = as_factor(PATIENT_RELIGION_DESC),
          relig_affil = fct_recode(relig_affil, yes = "CATHOLIC",
                      no = "NONE", 
                      yes = "CHRISTIAN", yes = "LUTHERAN",
                      yes = "RUSSIAN ORTHODOX",
                      yes = "PROTESTANT", yes = "BAPTIST",
                      yes = "METHODIST", yes = "PRESBYTERIAN",
                      yes = "NON-DENOMINATIONAL", yes = "JEWISH",
                      yes = "MUSLIM", yes = "OTHER",
                      yes = "EPISCOPALIAN", yes = "PENTECOSTAL",
                      no = "AGNOSTIC", no = "ATHEIST",
                      yes = "JEHOVAH'S WITNESS", yes = "HINDU",
                      yes = "GREEK ORTHODOX", yes = "CHURCH OF JESUS CHRIST OF LATTER-DAY SAINTS", yes = "BAHAI", no = "SPIRITUAL", yes = "CHURCH OF CHRIST",
         yes = "SEVENTH DAY ADVENTIST", yes = "APOSTOLIC", yes = "BUDDHIST", yes = "NAZARENE", yes = "CONGREGATIONAL", yes = "UNITED CHURCH OF CHR", yes = "REFORMED", yes = "PAGAN", yes = "JAIN", yes = "ASSEMBLY OF GOD", yes = "REORG CHR OF LAT DAY", yes = "QUAKER", yes = "UNITARIAN UNIVERSALIST", yes = "MENNONITE", yes = "FREE METHODIST", yes = "NATIVE AMER SPIRITL", yes = "WICCAN", yes = "ORTHODOX", yes = "SALVATION ARMY", yes = "DISCIPLES OF CHRIST", yes = "AFRICAN METHODIST EP", yes = "SIKH", yes = "CHURCH OF GOD", yes = "TAOIST", yes = "ANGLICAN"),
relig_affil = fct_relevel(relig_affil, ref = 'yes')) %>% 
mutate(relig_affil = na_if(relig_affil, "UNKNOWN")) %>% 
mutate(relig_affil = na_if(relig_affil, "PATIENT REFUSED")) -> vaxdfThemeMsRel

Race

vaxdfThemeMsRel %>% 
mutate(race_5 = as_factor(PATIENT_RACE_DESC),
         race_5 = fct_recode(race_5, Other = "OTHER",
                  Other = "UNKNOWN", Other = "CHOOSE NOT TO DISCLOSE",
                  Other = "NATIVE HAWAIIAN AND OTHER PACIFIC ISLANDER", 
                  Other = "MIDDLE EASTERN/NORTH AFRICAN",
                ASIAN = "ASIAN INDIAN", ASIAN = "OTHER ASIAN",
                ASIAN = "JAPANESE", ASIAN = "KOREAN", ASIAN = "FILIPINO",
                ASIAN = "CHINESE"),
         race_5 = fct_relevel(race_5, ref = 'WHITE OR CAUCASIAN')) -> vaxdfThemeMsRelRa

Gender

vaxdfThemeMsRelRa %>% 
mutate(gender = as_factor(PATIENT_GENDER_CD),
         gender = fct_recode(gender, male = "M", female = "F"),
         gender = fct_relevel(gender, ref = "male")) -> vaxdfThemeMsRelRaG

Language

vaxdfThemeMsRelRaG %>% 
  mutate(lang_3 = as_factor(PATIENT_LANGUAGE_DESC),
lang_3 = fct_recode(lang_3, English = "ENGLISH",
Other = "ARABIC", Other = "JAPANESE",
Other = "CHINESE, MANDARIN",
Other = "KOREAN", Other = "SIGN LANGUAGE",
Other = "RUSSIAN", Other = "SPANISH", Other = "ARMENIAN",
Other = "TURKISH", Other = "HINDI", Other = "BENGALI", Other = "FARSI; PERSIAN", Other = "ALBANIAN", Other = "HMONG", Other = "ROMANIAN", 
Other = "PUNJABI", Other = "CROATIAN", Other = "CHALDEAN", 
Other = "BURMESE", Other = "PORTUGUESE",
Other = "TAGALOG", Other = "FRENCH",
Other = "GERMAN", Other = "CHINESE, CANTONESE",
Other = "BOSNIAN", Other = "URDU",
Other = "UNKNOWN"),
lang_3 = fct_relevel(lang_3, ref = 'English')) -> vaxdfThemeMsRelRaGL

Ethnicity

vaxdfThemeMsRelRaGL %>% 
  mutate(ethnic_3 = as_factor(PATIENT_ETHNIC_GROUP_DESC)) %>% 
 mutate(ethnic_3 = na_if(ethnic_3, "UNKNOWN")) %>% 
mutate(ethnic_3 = na_if(ethnic_3, "CHOOSE NOT TO DISCLOSE")) -> vaxdfThemeMsRelRaGLEth

Population density

vaxdfThemeMsRelRaGLEth %>% 
  mutate(pop_dens=E_TOTPOP/AREA_SQMI) -> vaxdfThemeMsRelRaGLEthPop

Codebook

vaxdfThemeMsRelRaGLEthPop %>% 
select(age_yrs, gender, race_5, ethnic_3, lang_3, relig_affil, mstat_5, STATE,AREA_SQMI, E_TOTPOP, pop_dens, RPL_THEMES, RPL_THEME1, RPL_THEME2, RPL_THEME3, RPL_THEME4, F_TOTAL, F_THEME1, F_THEME2, F_THEME3, F_THEME4, r_pct, flu_2015, flu_2016, flu_2017, flu_2018, flu_2019, flu_2020, flu_2021, flu_2022, total_flu, prevnar, pvax, any_pneum, any_pneum, total_cov_vax, total_shingrix) -> vax_clean1
print(dfSummary(vax_clean1), method = 'render')

Data Frame Summary

vax_clean1

Dimensions: 15245 x 36
Duplicates: 0
No Variable Stats / Values Freqs (% of Valid) Graph Valid Missing
1 age_yrs [numeric]
Mean (sd) : 49.3 (19.5)
min ≤ med ≤ max:
1 ≤ 49.3 ≤ 108.3
IQR (CV) : 31.5 (0.4)
11557 distinct values 15245 (100.0%) 0 (0.0%)
2 gender [factor]
1. male
2. female
6973(45.7%)
8272(54.3%)
15245 (100.0%) 0 (0.0%)
3 race_5 [factor]
1. WHITE OR CAUCASIAN
2. BLACK OR AFRICAN AMERICAN
3. Other
4. ASIAN
5. AMERICAN INDIAN AND ALASK
13230(86.8%)
946(6.2%)
638(4.2%)
375(2.5%)
56(0.4%)
15245 (100.0%) 0 (0.0%)
4 ethnic_3 [factor]
1. NON-HISPANIC
2. UNKNOWN
3. CHOOSE NOT TO DISCLOSE
4. HISPANIC
14401(97.9%)
0(0.0%)
0(0.0%)
302(2.1%)
14703 (96.4%) 542 (3.6%)
5 lang_3 [factor]
1. English
2. Other
15081(98.9%)
164(1.1%)
15245 (100.0%) 0 (0.0%)
6 relig_affil [factor]
1. yes
2. no
3. PATIENT REFUSED
4. UNKNOWN
8211(57.4%)
6085(42.6%)
0(0.0%)
0(0.0%)
14296 (93.8%) 949 (6.2%)
7 mstat_5 [factor]
1. married
2. unknown
3. unmarried
4. div_sep
5. widow
6198(40.7%)
3236(21.2%)
4997(32.8%)
507(3.3%)
307(2.0%)
15245 (100.0%) 0 (0.0%)
8 STATE [character]
1. FLORIDA
2. ILLINOIS
3. INDIANA
4. MARYLAND
5. MICHIGAN
6. NEW YORK
7. NORTH CAROLINA
8. OHIO
9. PENNSYLVANIA
10. TEXAS
24(0.2%)
40(0.3%)
47(0.3%)
16(0.1%)
14103(96.5%)
38(0.3%)
10(0.1%)
316(2.2%)
14(0.1%)
7(0.0%)
14615 (95.9%) 630 (4.1%)
9 AREA_SQMI [numeric]
Mean (sd) : 15.2 (31.7)
min ≤ med ≤ max:
0 ≤ 2.9 ≤ 586.8
IQR (CV) : 13.5 (2.1)
2642 distinct values 14615 (95.9%) 630 (4.1%)
10 E_TOTPOP [numeric]
Mean (sd) : 4368.6 (1703.2)
min ≤ med ≤ max:
182 ≤ 4129 ≤ 20695
IQR (CV) : 2151 (0.4)
2110 distinct values 14615 (95.9%) 630 (4.1%)
11 pop_dens [numeric]
Mean (sd) : 2291.1 (4013.3)
min ≤ med ≤ max:
2.5 ≤ 1523.4 ≤ 166336.1
IQR (CV) : 2988 (1.8)
2642 distinct values 14615 (95.9%) 630 (4.1%)
12 RPL_THEMES [numeric]
Mean (sd) : 0.4 (0.3)
min ≤ med ≤ max:
0 ≤ 0.3 ≤ 1
IQR (CV) : 0.4 (0.7)
2506 distinct values 14607 (95.8%) 638 (4.2%)
13 RPL_THEME1 [numeric]
Mean (sd) : 0.3 (0.3)
min ≤ med ≤ max:
0 ≤ 0.3 ≤ 1
IQR (CV) : 0.4 (0.7)
2447 distinct values 14557 (95.5%) 688 (4.5%)
14 RPL_THEME2 [numeric]
Mean (sd) : 0.4 (0.3)
min ≤ med ≤ max:
0 ≤ 0.3 ≤ 1
IQR (CV) : 0.4 (0.7)
2421 distinct values 14608 (95.8%) 637 (4.2%)
15 RPL_THEME3 [numeric]
Mean (sd) : 0.5 (0.3)
min ≤ med ≤ max:
0 ≤ 0.5 ≤ 1
IQR (CV) : 0.5 (0.6)
1810 distinct values 14615 (95.9%) 630 (4.1%)
16 RPL_THEME4 [numeric]
Mean (sd) : 0.4 (0.3)
min ≤ med ≤ max:
0 ≤ 0.4 ≤ 1
IQR (CV) : 0.5 (0.7)
2428 distinct values 14585 (95.7%) 660 (4.3%)
17 F_TOTAL [numeric]
Mean (sd) : 0.7 (1.2)
min ≤ med ≤ max:
0 ≤ 0 ≤ 10
IQR (CV) : 1 (1.6)
11 distinct values 14607 (95.8%) 638 (4.2%)
18 F_THEME1 [numeric]
Mean (sd) : 0.1 (0.4)
min ≤ med ≤ max:
0 ≤ 0 ≤ 4
IQR (CV) : 0 (5.1)
0:13902(95.2%)
1:384(2.6%)
2:151(1.0%)
3:107(0.7%)
4:64(0.4%)
14608 (95.8%) 637 (4.2%)
19 F_THEME2 [numeric]
Mean (sd) : 0.2 (0.5)
min ≤ med ≤ max:
0 ≤ 0 ≤ 3
IQR (CV) : 0 (2.3)
0:11956(81.8%)
1:2271(15.5%)
2:363(2.5%)
3:18(0.1%)
14608 (95.8%) 637 (4.2%)
20 F_THEME3 [numeric]
Mean (sd) : 0.1 (0.3)
min ≤ med ≤ max:
0 ≤ 0 ≤ 2
IQR (CV) : 0 (2.9)
0:13064(89.4%)
1:1549(10.6%)
2:2(0.0%)
14615 (95.9%) 630 (4.1%)
21 F_THEME4 [numeric]
Mean (sd) : 0.3 (0.6)
min ≤ med ≤ max:
0 ≤ 0 ≤ 4
IQR (CV) : 1 (1.8)
0:10502(71.9%)
1:3444(23.6%)
2:559(3.8%)
3:86(0.6%)
4:16(0.1%)
14607 (95.8%) 638 (4.2%)
22 r_pct [numeric]
Mean (sd) : 44.7 (18)
min ≤ med ≤ max:
1.2 ≤ 47.9 ≤ 84.8
IQR (CV) : 24.7 (0.4)
2625 distinct values 12974 (85.1%) 2271 (14.9%)
23 flu_2015 [numeric]
Min : 0
Mean : 0.3
Max : 1
0:10848(71.2%)
1:4397(28.8%)
15245 (100.0%) 0 (0.0%)
24 flu_2016 [numeric]
Min : 0
Mean : 0.3
Max : 1
0:10650(69.9%)
1:4595(30.1%)
15245 (100.0%) 0 (0.0%)
25 flu_2017 [numeric]
Min : 0
Mean : 0.3
Max : 1
0:10791(70.8%)
1:4454(29.2%)
15245 (100.0%) 0 (0.0%)
26 flu_2018 [numeric]
Min : 0
Mean : 0.3
Max : 1
0:10681(70.1%)
1:4564(29.9%)
15245 (100.0%) 0 (0.0%)
27 flu_2019 [numeric]
Min : 0
Mean : 0.3
Max : 1
0:10713(70.3%)
1:4532(29.7%)
15245 (100.0%) 0 (0.0%)
28 flu_2020 [numeric]
Min : 0
Mean : 0.3
Max : 1
0:10632(69.7%)
1:4613(30.3%)
15245 (100.0%) 0 (0.0%)
29 flu_2021 [numeric]
Min : 0
Mean : 0.2
Max : 1
0:12049(79.0%)
1:3196(21.0%)
15245 (100.0%) 0 (0.0%)
30 flu_2022 [numeric]
Min : 0
Mean : 0
Max : 1
0:15081(98.9%)
1:164(1.1%)
15245 (100.0%) 0 (0.0%)
31 total_flu [numeric]
Mean (sd) : 2 (2.3)
min ≤ med ≤ max:
0 ≤ 1 ≤ 8
IQR (CV) : 4 (1.2)
0:6530(42.8%)
1:2014(13.2%)
2:1376(9.0%)
3:1244(8.2%)
4:1162(7.6%)
5:1058(6.9%)
6:955(6.3%)
7:899(5.9%)
8:7(0.0%)
15245 (100.0%) 0 (0.0%)
32 prevnar [numeric]
Mean (sd) : 0.3 (0.5)
min ≤ med ≤ max:
0 ≤ 0 ≤ 8
IQR (CV) : 1 (1.7)
0:10734(70.4%)
1:4238(27.8%)
2:210(1.4%)
3:32(0.2%)
4:24(0.2%)
5:4(0.0%)
6:1(0.0%)
7:1(0.0%)
8:1(0.0%)
15245 (100.0%) 0 (0.0%)
33 pvax [numeric]
Mean (sd) : 0.3 (0.5)
min ≤ med ≤ max:
0 ≤ 0 ≤ 6
IQR (CV) : 1 (1.8)
0:11257(73.8%)
1:3693(24.2%)
2:280(1.8%)
3:12(0.1%)
5:1(0.0%)
6:2(0.0%)
15245 (100.0%) 0 (0.0%)
34 any_pneum [numeric]
Mean (sd) : 0.6 (0.9)
min ≤ med ≤ max:
0 ≤ 0 ≤ 9
IQR (CV) : 1 (1.5)
0:9506(62.4%)
1:2820(18.5%)
2:2517(16.5%)
3:310(2.0%)
4:65(0.4%)
5:16(0.1%)
6:7(0.0%)
7:2(0.0%)
8:1(0.0%)
9:1(0.0%)
15245 (100.0%) 0 (0.0%)
35 total_cov_vax [numeric]
Mean (sd) : 1.4 (1.6)
min ≤ med ≤ max:
0 ≤ 0 ≤ 7
IQR (CV) : 3 (1.1)
0:7766(50.9%)
1:434(2.8%)
2:2207(14.5%)
3:3140(20.6%)
4:1489(9.8%)
5:161(1.1%)
6:39(0.3%)
7:9(0.1%)
15245 (100.0%) 0 (0.0%)
36 total_shingrix [numeric]
Mean (sd) : 0.2 (0.6)
min ≤ med ≤ max:
0 ≤ 0 ≤ 5
IQR (CV) : 0 (3.1)
0:13659(89.6%)
1:367(2.4%)
2:1116(7.3%)
3:91(0.6%)
4:10(0.1%)
5:2(0.0%)
15245 (100.0%) 0 (0.0%)

Generated by summarytools 1.0.1 (R version 4.2.1)
2022-10-20

Patient Characteristics

Baseline Characteristics

vax_clean1 %>% 
  select(age_yrs, gender, race_5, ethnic_3, lang_3, relig_affil, mstat_5, pop_dens, RPL_THEMES, RPL_THEME1, RPL_THEME2, RPL_THEME3, RPL_THEME4, flu_2021, total_flu, any_pneum, total_cov_vax, total_shingrix) -> baseline
baseline %>% tbl_summary(label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", pop_dens ~ "Population Density"),
        statistic = list(all_continuous() ~ "{mean} ({sd})"),
        missing_text = "(Missing)")
Characteristic N = 15,2451
Age 49 (19)
Gender
    male 6,973 (46%)
    female 8,272 (54%)
Race
    WHITE OR CAUCASIAN 13,230 (87%)
    BLACK OR AFRICAN AMERICAN 946 (6.2%)
    Other 638 (4.2%)
    ASIAN 375 (2.5%)
    AMERICAN INDIAN AND ALASKA NATIVE 56 (0.4%)
Ethnicity
    NON-HISPANIC 14,401 (98%)
    UNKNOWN 0 (0%)
    CHOOSE NOT TO DISCLOSE 0 (0%)
    HISPANIC 302 (2.1%)
    (Missing) 542
English Speaking
    English 15,081 (99%)
    Other 164 (1.1%)
Any Religious Affiliation
    yes 8,211 (57%)
    no 6,085 (43%)
    PATIENT REFUSED 0 (0%)
    UNKNOWN 0 (0%)
    (Missing) 949
Marital Status
    married 6,198 (41%)
    unknown 3,236 (21%)
    unmarried 4,997 (33%)
    div_sep 507 (3.3%)
    widow 307 (2.0%)
Population Density 2,291 (4,013)
    (Missing) 630
Total SVI 0.37 (0.26)
    (Missing) 638
Soceioeconomic Status 0.35 (0.25)
    (Missing) 688
Household Composition 0.39 (0.27)
    (Missing) 637
Minority Status and Language 0.48 (0.29)
    (Missing) 630
Housing and Transportation 0.44 (0.29)
    (Missing) 660
flu_2021 3,196 (21%)
total_flu
    0 6,530 (43%)
    1 2,014 (13%)
    2 1,376 (9.0%)
    3 1,244 (8.2%)
    4 1,162 (7.6%)
    5 1,058 (6.9%)
    6 955 (6.3%)
    7 899 (5.9%)
    8 7 (<0.1%)
any_pneum 0.60 (0.89)
total_cov_vax
    0 7,766 (51%)
    1 434 (2.8%)
    2 2,207 (14%)
    3 3,140 (21%)
    4 1,489 (9.8%)
    5 161 (1.1%)
    6 39 (0.3%)
    7 9 (<0.1%)
total_shingrix
    0 13,659 (90%)
    1 367 (2.4%)
    2 1,116 (7.3%)
    3 91 (0.6%)
    4 10 (<0.1%)
    5 2 (<0.1%)
1 Mean (SD); n (%)

Baseline characteristics by Flu 2021

baseline %>% tbl_summary(by = flu_2021,
         label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", pop_dens ~ "Population Density"),
        statistic = list(all_continuous() ~ "{mean} ({sd})"),
        missing_text = "(Missing)") %>% add_p()
There was an error in 'add_p()/add_difference()' for variable 'total_flu', p-value omitted:
Error in stats::fisher.test(c(6, 0, 2, 0, 6, 1, 2, 0, 0, 1, 6, 2, 0, 0, : FEXACT error 6 (f5xact).  LDKEY=526 is too small for this problem: kval=37321247.
Try increasing the size of the workspace.
There was an error in 'add_p()/add_difference()' for variable 'total_cov_vax', p-value omitted:
Error in stats::fisher.test(c(2, 0, 4, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 2, : FEXACT error 7(location). LDSTP=15780 is too small for this problem,
  (pastp=120.092, ipn_0:=ipoin[itp=402]=289, stp[ipn_0]=109.428).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'total_shingrix', p-value omitted:
Error in stats::fisher.test(c(0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, : FEXACT error 7(location). LDSTP=15780 is too small for this problem,
  (pastp=291.353, ipn_0:=ipoin[itp=483]=3585, stp[ipn_0]=275.121).
Increase workspace or consider using 'simulate.p.value=TRUE'
Characteristic 0, N = 12,0491 1, N = 3,1961 p-value2
Age 49 (19) 51 (19) <0.001
Gender <0.001
    male 5,604 (47%) 1,369 (43%)
    female 6,445 (53%) 1,827 (57%)
Race <0.001
    WHITE OR CAUCASIAN 10,440 (87%) 2,790 (87%)
    BLACK OR AFRICAN AMERICAN 786 (6.5%) 160 (5.0%)
    Other 533 (4.4%) 105 (3.3%)
    ASIAN 246 (2.0%) 129 (4.0%)
    AMERICAN INDIAN AND ALASKA NATIVE 44 (0.4%) 12 (0.4%)
Ethnicity 0.8
    NON-HISPANIC 11,357 (98%) 3,044 (98%)
    UNKNOWN 0 (0%) 0 (0%)
    CHOOSE NOT TO DISCLOSE 0 (0%) 0 (0%)
    HISPANIC 236 (2.0%) 66 (2.1%)
    (Missing) 456 86
English Speaking 0.070
    English 11,910 (99%) 3,171 (99%)
    Other 139 (1.2%) 25 (0.8%)
Any Religious Affiliation 0.013
    yes 6,376 (57%) 1,835 (59%)
    no 4,831 (43%) 1,254 (41%)
    PATIENT REFUSED 0 (0%) 0 (0%)
    UNKNOWN 0 (0%) 0 (0%)
    (Missing) 842 107
Marital Status <0.001
    married 4,707 (39%) 1,491 (47%)
    unknown 2,605 (22%) 631 (20%)
    unmarried 4,103 (34%) 894 (28%)
    div_sep 405 (3.4%) 102 (3.2%)
    widow 229 (1.9%) 78 (2.4%)
Population Density 2,273 (4,243) 2,356 (3,022) <0.001
    (Missing) 563 67
Total SVI 0.39 (0.26) 0.30 (0.23) <0.001
    (Missing) 570 68
Soceioeconomic Status 0.37 (0.26) 0.28 (0.23) <0.001
    (Missing) 598 90
Household Composition 0.41 (0.27) 0.32 (0.24) <0.001
    (Missing) 569 68
Minority Status and Language 0.47 (0.28) 0.51 (0.29) <0.001
    (Missing) 563 67
Housing and Transportation 0.45 (0.29) 0.39 (0.28) <0.001
    (Missing) 582 78
total_flu
    0 6,530 (54%) 0 (0%)
    1 1,873 (16%) 141 (4.4%)
    2 1,103 (9.2%) 273 (8.5%)
    3 914 (7.6%) 330 (10%)
    4 734 (6.1%) 428 (13%)
    5 527 (4.4%) 531 (17%)
    6 346 (2.9%) 609 (19%)
    7 22 (0.2%) 877 (27%)
    8 0 (0%) 7 (0.2%)
any_pneum 0.43 (0.76) 1.27 (1.02) <0.001
total_cov_vax
    0 7,562 (63%) 204 (6.4%)
    1 362 (3.0%) 72 (2.3%)
    2 1,758 (15%) 449 (14%)
    3 1,776 (15%) 1,364 (43%)
    4 559 (4.6%) 930 (29%)
    5 29 (0.2%) 132 (4.1%)
    6 3 (<0.1%) 36 (1.1%)
    7 0 (0%) 9 (0.3%)
total_shingrix
    0 11,503 (95%) 2,156 (67%)
    1 187 (1.6%) 180 (5.6%)
    2 332 (2.8%) 784 (25%)
    3 24 (0.2%) 67 (2.1%)
    4 3 (<0.1%) 7 (0.2%)
    5 0 (0%) 2 (<0.1%)
1 Mean (SD); n (%)
2 Wilcoxon rank sum test; Pearson's Chi-squared test; Fisher's exact test

Baseline characteristics by pneumonia

baseline %>% tbl_summary(by = any_pneum,
         label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", pop_dens ~ "Population Density"),
        statistic = list(all_continuous() ~ "{mean} ({sd})"),
        missing_text = "(Missing)") %>% add_p()
There was an error in 'add_p()/add_difference()' for variable 'gender', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, : FEXACT error 7(location). LDSTP=15780 is too small for this problem,
  (pastp=261.362, ipn_0:=ipoin[itp=270]=4455, stp[ipn_0]=261.333).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'race_5', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'relig_affil', p-value omitted:
Error in stats::fisher.test(structure(c(2L, NA, 1L, NA, 1L, 2L, 2L, 1L, : FEXACT error 7(location). LDSTP=15960 is too small for this problem,
  (pastp=41.9351, ipn_0:=ipoin[itp=384]=80, stp[ipn_0]=39.532).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'mstat_5', p-value omitted:
Error in stats::fisher.test(structure(c(2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'flu_2021', p-value omitted:
Error in stats::fisher.test(c(0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, : FEXACT error 7(location). LDSTP=15780 is too small for this problem,
  (pastp=40.9276, ipn_0:=ipoin[itp=439]=1112, stp[ipn_0]=35.7199).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'total_flu', p-value omitted:
Error in stats::fisher.test(c(6, 0, 2, 0, 6, 1, 2, 0, 0, 1, 6, 2, 0, 0, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'total_cov_vax', p-value omitted:
Error in stats::fisher.test(c(2, 0, 4, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 2, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'total_shingrix', p-value omitted:
Error in stats::fisher.test(c(0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, : FEXACT error 501.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
Characteristic 0, N = 9,5061 1, N = 2,8201 2, N = 2,5171 3, N = 3101 4, N = 651 5, N = 161 6, N = 71 7, N = 21 8, N = 11 9, N = 11 p-value2
Age 48 (19) 52 (20) 50 (19) 56 (18) 50 (27) 46 (33) 63 (27) 41 (51) 3 (NA) 69 (NA) <0.001
Gender
    male 4,258 (45%) 1,325 (47%) 1,185 (47%) 161 (52%) 30 (46%) 8 (50%) 4 (57%) 1 (50%) 0 (0%) 1 (100%)
    female 5,248 (55%) 1,495 (53%) 1,332 (53%) 149 (48%) 35 (54%) 8 (50%) 3 (43%) 1 (50%) 1 (100%) 0 (0%)
Race
    WHITE OR CAUCASIAN 8,205 (86%) 2,441 (87%) 2,232 (89%) 268 (86%) 59 (91%) 14 (88%) 7 (100%) 2 (100%) 1 (100%) 1 (100%)
    BLACK OR AFRICAN AMERICAN 604 (6.4%) 187 (6.6%) 133 (5.3%) 19 (6.1%) 2 (3.1%) 1 (6.2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    Other 437 (4.6%) 108 (3.8%) 78 (3.1%) 12 (3.9%) 2 (3.1%) 1 (6.2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    ASIAN 224 (2.4%) 74 (2.6%) 67 (2.7%) 8 (2.6%) 2 (3.1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    AMERICAN INDIAN AND ALASKA NATIVE 36 (0.4%) 10 (0.4%) 7 (0.3%) 3 (1.0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Ethnicity 0.8
    NON-HISPANIC 8,922 (98%) 2,692 (98%) 2,402 (98%) 296 (99%) 62 (97%) 16 (100%) 7 (100%) 2 (100%) 1 (100%) 1 (100%)
    UNKNOWN 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    CHOOSE NOT TO DISCLOSE 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    HISPANIC 187 (2.1%) 60 (2.2%) 50 (2.0%) 3 (1.0%) 2 (3.1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    (Missing) 397 68 65 11 1 0 0 0 0 0
English Speaking 0.025
    English 9,398 (99%) 2,781 (99%) 2,504 (99%) 307 (99%) 65 (100%) 15 (94%) 7 (100%) 2 (100%) 1 (100%) 1 (100%)
    Other 108 (1.1%) 39 (1.4%) 13 (0.5%) 3 (1.0%) 0 (0%) 1 (6.2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Any Religious Affiliation
    yes 4,913 (56%) 1,620 (60%) 1,444 (59%) 182 (60%) 32 (52%) 13 (81%) 3 (43%) 2 (100%) 1 (100%) 1 (100%)
    no 3,858 (44%) 1,084 (40%) 985 (41%) 121 (40%) 30 (48%) 3 (19%) 4 (57%) 0 (0%) 0 (0%) 0 (0%)
    PATIENT REFUSED 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    UNKNOWN 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    (Missing) 735 116 88 7 3 0 0 0 0 0
Marital Status
    married 3,676 (39%) 1,207 (43%) 1,107 (44%) 168 (54%) 30 (46%) 7 (44%) 2 (29%) 1 (50%) 0 (0%) 0 (0%)
    unknown 2,179 (23%) 516 (18%) 475 (19%) 48 (15%) 13 (20%) 2 (12%) 1 (14%) 0 (0%) 1 (100%) 1 (100%)
    unmarried 3,180 (33%) 904 (32%) 812 (32%) 72 (23%) 20 (31%) 6 (38%) 2 (29%) 1 (50%) 0 (0%) 0 (0%)
    div_sep 312 (3.3%) 104 (3.7%) 74 (2.9%) 16 (5.2%) 1 (1.5%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    widow 159 (1.7%) 89 (3.2%) 49 (1.9%) 6 (1.9%) 1 (1.5%) 1 (6.2%) 2 (29%) 0 (0%) 0 (0%) 0 (0%)
Population Density 2,303 (4,465) 2,266 (3,521) 2,266 (2,519) 2,370 (4,172) 2,309 (2,257) 2,651 (2,273) 1,279 (1,263) 2,373 (178) 4,275 (NA) 1,034 (NA) 0.3
    (Missing) 451 109 60 8 2 0 0 0 0 0
Total SVI 0.38 (0.26) 0.35 (0.25) 0.34 (0.25) 0.36 (0.24) 0.41 (0.28) 0.36 (0.23) 0.45 (0.26) 0.09 (0.04) 0.50 (NA) 0.37 (NA) <0.001
    (Missing) 458 110 60 8 2 0 0 0 0 0
Soceioeconomic Status 0.36 (0.26) 0.33 (0.25) 0.32 (0.25) 0.33 (0.24) 0.38 (0.27) 0.36 (0.26) 0.43 (0.26) 0.07 (0.04) 0.28 (NA) 0.45 (NA) <0.001
    (Missing) 483 122 71 10 2 0 0 0 0 0
Household Composition 0.41 (0.27) 0.37 (0.26) 0.35 (0.26) 0.39 (0.26) 0.44 (0.29) 0.41 (0.22) 0.54 (0.21) 0.26 (0.06) 0.38 (NA) 0.77 (NA) <0.001
    (Missing) 457 110 60 8 2 0 0 0 0 0
Minority Status and Language 0.47 (0.28) 0.48 (0.29) 0.49 (0.29) 0.49 (0.29) 0.46 (0.31) 0.51 (0.33) 0.31 (0.24) 0.47 (0.33) 0.70 (NA) 0.08 (NA) 0.12
    (Missing) 451 109 60 8 2 0 0 0 0 0
Housing and Transportation 0.45 (0.29) 0.43 (0.29) 0.41 (0.28) 0.43 (0.27) 0.46 (0.27) 0.38 (0.24) 0.52 (0.30) 0.09 (0.03) 0.74 (NA) 0.33 (NA) <0.001
    (Missing) 471 114 65 8 2 0 0 0 0 0
flu_2021 890 (9.4%) 863 (31%) 1,212 (48%) 178 (57%) 34 (52%) 12 (75%) 4 (57%) 2 (100%) 0 (0%) 1 (100%)
total_flu
    0 6,025 (63%) 369 (13%) 126 (5.0%) 9 (2.9%) 1 (1.5%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    1 1,247 (13%) 531 (19%) 217 (8.6%) 15 (4.8%) 3 (4.6%) 1 (6.2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    2 656 (6.9%) 399 (14%) 293 (12%) 18 (5.8%) 7 (11%) 0 (0%) 2 (29%) 0 (0%) 1 (100%) 0 (0%)
    3 461 (4.8%) 376 (13%) 361 (14%) 32 (10%) 8 (12%) 5 (31%) 0 (0%) 1 (50%) 0 (0%) 0 (0%)
    4 346 (3.6%) 353 (13%) 400 (16%) 48 (15%) 12 (18%) 2 (12%) 1 (14%) 0 (0%) 0 (0%) 0 (0%)
    5 301 (3.2%) 286 (10%) 396 (16%) 59 (19%) 12 (18%) 4 (25%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    6 267 (2.8%) 258 (9.1%) 346 (14%) 62 (20%) 15 (23%) 2 (12%) 3 (43%) 1 (50%) 0 (0%) 1 (100%)
    7 203 (2.1%) 243 (8.6%) 377 (15%) 66 (21%) 7 (11%) 2 (12%) 1 (14%) 0 (0%) 0 (0%) 0 (0%)
    8 0 (0%) 5 (0.2%) 1 (<0.1%) 1 (0.3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
total_cov_vax
    0 6,076 (64%) 1,066 (38%) 560 (22%) 45 (15%) 12 (18%) 4 (25%) 1 (14%) 1 (50%) 1 (100%) 0 (0%)
    1 261 (2.7%) 93 (3.3%) 73 (2.9%) 5 (1.6%) 2 (3.1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    2 1,252 (13%) 471 (17%) 408 (16%) 55 (18%) 16 (25%) 3 (19%) 2 (29%) 0 (0%) 0 (0%) 0 (0%)
    3 1,461 (15%) 746 (26%) 820 (33%) 89 (29%) 19 (29%) 3 (19%) 1 (14%) 0 (0%) 0 (0%) 1 (100%)
    4 419 (4.4%) 400 (14%) 555 (22%) 94 (30%) 12 (18%) 6 (38%) 2 (29%) 1 (50%) 0 (0%) 0 (0%)
    5 29 (0.3%) 35 (1.2%) 75 (3.0%) 19 (6.1%) 2 (3.1%) 0 (0%) 1 (14%) 0 (0%) 0 (0%) 0 (0%)
    6 6 (<0.1%) 7 (0.2%) 22 (0.9%) 2 (0.6%) 2 (3.1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    7 2 (<0.1%) 2 (<0.1%) 4 (0.2%) 1 (0.3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
total_shingrix
    0 9,207 (97%) 2,331 (83%) 1,868 (74%) 192 (62%) 46 (71%) 9 (56%) 3 (43%) 2 (100%) 1 (100%) 0 (0%)
    1 82 (0.9%) 131 (4.6%) 136 (5.4%) 15 (4.8%) 3 (4.6%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    2 204 (2.1%) 330 (12%) 470 (19%) 88 (28%) 13 (20%) 6 (38%) 4 (57%) 0 (0%) 0 (0%) 1 (100%)
    3 10 (0.1%) 26 (0.9%) 38 (1.5%) 13 (4.2%) 3 (4.6%) 1 (6.2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    4 2 (<0.1%) 2 (<0.1%) 4 (0.2%) 2 (0.6%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    5 1 (<0.1%) 0 (0%) 1 (<0.1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
1 Mean (SD); n (%)
2 Kruskal-Wallis rank sum test; Fisher's exact test

Baseline characteristics by Shingrix

baseline %>% tbl_summary(by = total_shingrix,
         label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", pop_dens ~ "Population Density"),
        statistic = list(all_continuous() ~ "{mean} ({sd})"),
        missing_text = "(Missing)") %>% add_p()
There was an error in 'add_p()/add_difference()' for variable 'race_5', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'relig_affil', p-value omitted:
Error in stats::fisher.test(structure(c(2L, NA, 1L, NA, 1L, 2L, 2L, 1L, : FEXACT error 7(location). LDSTP=15960 is too small for this problem,
  (pastp=283.429, ipn_0:=ipoin[itp=172]=4617, stp[ipn_0]=277.031).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'mstat_5', p-value omitted:
Error in stats::fisher.test(structure(c(2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'flu_2021', p-value omitted:
Error in stats::fisher.test(c(0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, : FEXACT error 7(location). LDSTP=15780 is too small for this problem,
  (pastp=291.353, ipn_0:=ipoin[itp=483]=3585, stp[ipn_0]=275.121).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'total_flu', p-value omitted:
Error in stats::fisher.test(c(6, 0, 2, 0, 6, 1, 2, 0, 0, 1, 6, 2, 0, 0, : FEXACT error 501.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'total_cov_vax', p-value omitted:
Error in stats::fisher.test(c(2, 0, 4, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 2, : FEXACT error 501.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
Characteristic 0, N = 13,6591 1, N = 3671 2, N = 1,1161 3, N = 911 4, N = 101 5, N = 21 p-value2
Age 48 (19) 62 (14) 66 (10) 67 (11) 68 (7) 65 (6) <0.001
Gender 0.2
    male 6,285 (46%) 162 (44%) 479 (43%) 41 (45%) 6 (60%) 0 (0%)
    female 7,374 (54%) 205 (56%) 637 (57%) 50 (55%) 4 (40%) 2 (100%)
Race
    WHITE OR CAUCASIAN 11,809 (86%) 324 (88%) 1,003 (90%) 82 (90%) 10 (100%) 2 (100%)
    BLACK OR AFRICAN AMERICAN 883 (6.5%) 22 (6.0%) 37 (3.3%) 4 (4.4%) 0 (0%) 0 (0%)
    Other 587 (4.3%) 13 (3.5%) 35 (3.1%) 3 (3.3%) 0 (0%) 0 (0%)
    ASIAN 328 (2.4%) 8 (2.2%) 38 (3.4%) 1 (1.1%) 0 (0%) 0 (0%)
    AMERICAN INDIAN AND ALASKA NATIVE 52 (0.4%) 0 (0%) 3 (0.3%) 1 (1.1%) 0 (0%) 0 (0%)
Ethnicity 0.7
    NON-HISPANIC 12,898 (98%) 352 (98%) 1,052 (99%) 87 (99%) 10 (100%) 2 (100%)
    UNKNOWN 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    CHOOSE NOT TO DISCLOSE 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    HISPANIC 279 (2.1%) 6 (1.7%) 16 (1.5%) 1 (1.1%) 0 (0%) 0 (0%)
    (Missing) 482 9 48 3 0 0
English Speaking 0.7
    English 13,507 (99%) 363 (99%) 1,108 (99%) 91 (100%) 10 (100%) 2 (100%)
    Other 152 (1.1%) 4 (1.1%) 8 (0.7%) 0 (0%) 0 (0%) 0 (0%)
Any Religious Affiliation
    yes 7,163 (56%) 247 (69%) 729 (67%) 62 (70%) 8 (89%) 2 (100%)
    no 5,585 (44%) 113 (31%) 360 (33%) 26 (30%) 1 (11%) 0 (0%)
    PATIENT REFUSED 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    UNKNOWN 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    (Missing) 911 7 27 3 1 0
Marital Status
    married 5,253 (38%) 206 (56%) 669 (60%) 61 (67%) 7 (70%) 2 (100%)
    unknown 2,965 (22%) 71 (19%) 184 (16%) 15 (16%) 1 (10%) 0 (0%)
    unmarried 4,748 (35%) 67 (18%) 171 (15%) 10 (11%) 1 (10%) 0 (0%)
    div_sep 444 (3.3%) 15 (4.1%) 46 (4.1%) 2 (2.2%) 0 (0%) 0 (0%)
    widow 249 (1.8%) 8 (2.2%) 46 (4.1%) 3 (3.3%) 1 (10%) 0 (0%)
Population Density 2,314 (4,165) 1,988 (2,015) 2,059 (2,179) 2,918 (4,801) 2,947 (2,257) 2,127 (641) 0.4
    (Missing) 598 4 26 2 0 0
Total SVI 0.38 (0.26) 0.33 (0.25) 0.28 (0.22) 0.29 (0.25) 0.31 (0.25) 0.65 (0.21) <0.001
    (Missing) 606 4 26 2 0 0
Soceioeconomic Status 0.36 (0.25) 0.31 (0.25) 0.25 (0.22) 0.24 (0.25) 0.25 (0.19) 0.61 (0.23) <0.001
    (Missing) 647 4 34 3 0 0
Household Composition 0.40 (0.27) 0.37 (0.26) 0.31 (0.23) 0.34 (0.24) 0.25 (0.21) 0.39 (0.38) <0.001
    (Missing) 605 4 26 2 0 0
Minority Status and Language 0.48 (0.29) 0.47 (0.30) 0.49 (0.29) 0.53 (0.28) 0.46 (0.26) 0.82 (0.15) 0.2
    (Missing) 598 4 26 2 0 0
Housing and Transportation 0.44 (0.29) 0.40 (0.28) 0.37 (0.27) 0.38 (0.31) 0.51 (0.31) 0.64 (0.12) <0.001
    (Missing) 621 6 30 3 0 0
flu_2021 2,156 (16%) 180 (49%) 784 (70%) 67 (74%) 7 (70%) 2 (100%)
total_flu
    0 6,469 (47%) 33 (9.0%) 27 (2.4%) 1 (1.1%) 0 (0%) 0 (0%)
    1 1,929 (14%) 39 (11%) 43 (3.9%) 3 (3.3%) 0 (0%) 0 (0%)
    2 1,257 (9.2%) 25 (6.8%) 86 (7.7%) 8 (8.8%) 0 (0%) 0 (0%)
    3 1,054 (7.7%) 64 (17%) 114 (10%) 10 (11%) 2 (20%) 0 (0%)
    4 919 (6.7%) 61 (17%) 168 (15%) 13 (14%) 1 (10%) 0 (0%)
    5 809 (5.9%) 43 (12%) 194 (17%) 12 (13%) 0 (0%) 0 (0%)
    6 665 (4.9%) 57 (16%) 209 (19%) 18 (20%) 4 (40%) 2 (100%)
    7 553 (4.0%) 45 (12%) 272 (24%) 26 (29%) 3 (30%) 0 (0%)
    8 4 (<0.1%) 0 (0%) 3 (0.3%) 0 (0%) 0 (0%) 0 (0%)
any_pneum 0.51 (0.82) 1.25 (0.88) 1.48 (1.01) 1.74 (1.02) 1.60 (1.07) 1.00 (1.41) <0.001
total_cov_vax
    0 7,594 (56%) 87 (24%) 77 (6.9%) 7 (7.7%) 1 (10%) 0 (0%)
    1 403 (3.0%) 11 (3.0%) 17 (1.5%) 3 (3.3%) 0 (0%) 0 (0%)
    2 2,008 (15%) 65 (18%) 128 (11%) 5 (5.5%) 1 (10%) 0 (0%)
    3 2,642 (19%) 116 (32%) 356 (32%) 24 (26%) 1 (10%) 1 (50%)
    4 901 (6.6%) 76 (21%) 465 (42%) 42 (46%) 4 (40%) 1 (50%)
    5 92 (0.7%) 9 (2.5%) 53 (4.7%) 6 (6.6%) 1 (10%) 0 (0%)
    6 15 (0.1%) 3 (0.8%) 16 (1.4%) 3 (3.3%) 2 (20%) 0 (0%)
    7 4 (<0.1%) 0 (0%) 4 (0.4%) 1 (1.1%) 0 (0%) 0 (0%)
1 Mean (SD); n (%)
2 Kruskal-Wallis rank sum test; Fisher's exact test

Baseline Characteristics by Total_COVID

baseline %>% tbl_summary(by = total_cov_vax,
         label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", pop_dens ~ "Population Density"),
        statistic = list(all_continuous() ~ "{mean} ({sd})"),
        missing_text = "(Missing)") %>% add_p()
There was an error in 'add_p()/add_difference()' for variable 'gender', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, : FEXACT error 7(location). LDSTP=15780 is too small for this problem,
  (pastp=428.53, ipn_0:=ipoin[itp=51]=11, stp[ipn_0]=427.494).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'race_5', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'ethnic_3', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, : FEXACT error 7(location). LDSTP=15900 is too small for this problem,
  (pastp=196.676, ipn_0:=ipoin[itp=361]=811, stp[ipn_0]=197.454).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'relig_affil', p-value omitted:
Error in stats::fisher.test(structure(c(2L, NA, 1L, NA, 1L, 2L, 2L, 1L, : FEXACT error 7(location). LDSTP=15960 is too small for this problem,
  (pastp=398.221, ipn_0:=ipoin[itp=284]=7733, stp[ipn_0]=398.559).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'mstat_5', p-value omitted:
Error in stats::fisher.test(structure(c(2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'flu_2021', p-value omitted:
Error in stats::fisher.test(c(0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, : FEXACT error 7(location). LDSTP=15780 is too small for this problem,
  (pastp=120.092, ipn_0:=ipoin[itp=402]=289, stp[ipn_0]=109.428).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'total_flu', p-value omitted:
Error in stats::fisher.test(c(6, 0, 2, 0, 6, 1, 2, 0, 0, 1, 6, 2, 0, 0, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'total_shingrix', p-value omitted:
Error in stats::fisher.test(c(0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, : FEXACT error 501.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
Characteristic 0, N = 7,7661 1, N = 4341 2, N = 2,2071 3, N = 3,1401 4, N = 1,4891 5, N = 1611 6, N = 391 7, N = 91 p-value2
Age 49 (20) 47 (18) 46 (19) 49 (18) 59 (17) 53 (18) 62 (18) 49 (21) <0.001
Gender
    male 3,587 (46%) 192 (44%) 1,038 (47%) 1,399 (45%) 669 (45%) 70 (43%) 14 (36%) 4 (44%)
    female 4,179 (54%) 242 (56%) 1,169 (53%) 1,741 (55%) 820 (55%) 91 (57%) 25 (64%) 5 (56%)
Race
    WHITE OR CAUCASIAN 6,756 (87%) 380 (88%) 1,863 (84%) 2,746 (87%) 1,297 (87%) 147 (91%) 34 (87%) 7 (78%)
    BLACK OR AFRICAN AMERICAN 504 (6.5%) 20 (4.6%) 169 (7.7%) 166 (5.3%) 80 (5.4%) 4 (2.5%) 2 (5.1%) 1 (11%)
    Other 344 (4.4%) 20 (4.6%) 110 (5.0%) 112 (3.6%) 46 (3.1%) 4 (2.5%) 2 (5.1%) 0 (0%)
    ASIAN 130 (1.7%) 14 (3.2%) 56 (2.5%) 107 (3.4%) 61 (4.1%) 5 (3.1%) 1 (2.6%) 1 (11%)
    AMERICAN INDIAN AND ALASKA NATIVE 32 (0.4%) 0 (0%) 9 (0.4%) 9 (0.3%) 5 (0.3%) 1 (0.6%) 0 (0%) 0 (0%)
Ethnicity
    NON-HISPANIC 7,309 (98%) 413 (97%) 2,078 (97%) 2,985 (98%) 1,417 (99%) 154 (99%) 37 (95%) 8 (89%)
    UNKNOWN 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    CHOOSE NOT TO DISCLOSE 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    HISPANIC 140 (1.9%) 12 (2.8%) 62 (2.9%) 65 (2.1%) 19 (1.3%) 1 (0.6%) 2 (5.1%) 1 (11%)
    (Missing) 317 9 67 90 53 6 0 0
English Speaking 0.5
    English 7,679 (99%) 428 (99%) 2,177 (99%) 3,110 (99%) 1,479 (99%) 160 (99%) 39 (100%) 9 (100%)
    Other 87 (1.1%) 6 (1.4%) 30 (1.4%) 30 (1.0%) 10 (0.7%) 1 (0.6%) 0 (0%) 0 (0%)
Any Religious Affiliation
    yes 4,035 (57%) 239 (58%) 1,210 (58%) 1,711 (57%) 894 (62%) 93 (60%) 25 (68%) 4 (44%)
    no 3,106 (43%) 174 (42%) 894 (42%) 1,293 (43%) 539 (38%) 62 (40%) 12 (32%) 5 (56%)
    PATIENT REFUSED 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    UNKNOWN 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
    (Missing) 625 21 103 136 56 6 2 0
Marital Status
    married 3,013 (39%) 147 (34%) 782 (35%) 1,362 (43%) 790 (53%) 82 (51%) 16 (41%) 6 (67%)
    unknown 1,478 (19%) 120 (28%) 590 (27%) 741 (24%) 262 (18%) 33 (20%) 11 (28%) 1 (11%)
    unmarried 2,834 (36%) 143 (33%) 732 (33%) 891 (28%) 348 (23%) 39 (24%) 8 (21%) 2 (22%)
    div_sep 280 (3.6%) 17 (3.9%) 65 (2.9%) 95 (3.0%) 42 (2.8%) 5 (3.1%) 3 (7.7%) 0 (0%)
    widow 161 (2.1%) 7 (1.6%) 38 (1.7%) 51 (1.6%) 47 (3.2%) 2 (1.2%) 1 (2.6%) 0 (0%)
Population Density 2,281 (4,827) 2,477 (5,536) 2,245 (2,647) 2,282 (2,952) 2,322 (2,424) 2,662 (2,511) 2,869 (3,429) 1,774 (1,641) <0.001
    (Missing) 428 19 67 76 35 3 2 0
Total SVI 0.40 (0.26) 0.36 (0.27) 0.36 (0.26) 0.32 (0.24) 0.30 (0.23) 0.28 (0.23) 0.34 (0.23) 0.31 (0.23) <0.001
    (Missing) 434 19 69 76 35 3 2 0
Soceioeconomic Status 0.39 (0.26) 0.34 (0.26) 0.34 (0.25) 0.30 (0.24) 0.27 (0.23) 0.24 (0.24) 0.26 (0.23) 0.21 (0.17) <0.001
    (Missing) 444 21 73 96 49 3 2 0
Household Composition 0.43 (0.27) 0.39 (0.27) 0.39 (0.26) 0.35 (0.25) 0.31 (0.24) 0.29 (0.24) 0.27 (0.21) 0.32 (0.22) <0.001
    (Missing) 433 19 69 76 35 3 2 0
Minority Status and Language 0.46 (0.28) 0.47 (0.28) 0.48 (0.29) 0.50 (0.29) 0.51 (0.29) 0.55 (0.29) 0.67 (0.25) 0.53 (0.29) <0.001
    (Missing) 428 19 67 76 35 3 2 0
Housing and Transportation 0.46 (0.29) 0.43 (0.28) 0.43 (0.29) 0.40 (0.28) 0.39 (0.28) 0.35 (0.26) 0.44 (0.28) 0.43 (0.27) <0.001
    (Missing) 440 19 71 83 40 5 2 0
flu_2021 204 (2.6%) 72 (17%) 449 (20%) 1,364 (43%) 930 (62%) 132 (82%) 36 (92%) 9 (100%)
total_flu
    0 4,886 (63%) 167 (38%) 675 (31%) 601 (19%) 192 (13%) 7 (4.3%) 2 (5.1%) 0 (0%)
    1 1,206 (16%) 65 (15%) 336 (15%) 317 (10%) 85 (5.7%) 4 (2.5%) 1 (2.6%) 0 (0%)
    2 618 (8.0%) 49 (11%) 259 (12%) 324 (10%) 116 (7.8%) 9 (5.6%) 1 (2.6%) 0 (0%)
    3 424 (5.5%) 47 (11%) 247 (11%) 349 (11%) 164 (11%) 10 (6.2%) 2 (5.1%) 1 (11%)
    4 304 (3.9%) 35 (8.1%) 240 (11%) 363 (12%) 199 (13%) 13 (8.1%) 5 (13%) 3 (33%)
    5 193 (2.5%) 40 (9.2%) 195 (8.8%) 407 (13%) 187 (13%) 28 (17%) 8 (21%) 0 (0%)
    6 96 (1.2%) 23 (5.3%) 156 (7.1%) 397 (13%) 247 (17%) 28 (17%) 5 (13%) 3 (33%)
    7 39 (0.5%) 8 (1.8%) 99 (4.5%) 380 (12%) 295 (20%) 61 (38%) 15 (38%) 2 (22%)
    8 0 (0%) 0 (0%) 0 (0%) 2 (<0.1%) 4 (0.3%) 1 (0.6%) 0 (0%) 0 (0%)
any_pneum 0.31 (0.66) 0.60 (0.84) 0.70 (0.93) 0.88 (0.96) 1.27 (1.01) 1.59 (1.02) 1.67 (0.98) 1.44 (1.01) <0.001
total_shingrix
    0 7,594 (98%) 403 (93%) 2,008 (91%) 2,642 (84%) 901 (61%) 92 (57%) 15 (38%) 4 (44%)
    1 87 (1.1%) 11 (2.5%) 65 (2.9%) 116 (3.7%) 76 (5.1%) 9 (5.6%) 3 (7.7%) 0 (0%)
    2 77 (1.0%) 17 (3.9%) 128 (5.8%) 356 (11%) 465 (31%) 53 (33%) 16 (41%) 4 (44%)
    3 7 (<0.1%) 3 (0.7%) 5 (0.2%) 24 (0.8%) 42 (2.8%) 6 (3.7%) 3 (7.7%) 1 (11%)
    4 1 (<0.1%) 0 (0%) 1 (<0.1%) 1 (<0.1%) 4 (0.3%) 1 (0.6%) 2 (5.1%) 0 (0%)
    5 0 (0%) 0 (0%) 0 (0%) 1 (<0.1%) 1 (<0.1%) 0 (0%) 0 (0%) 0 (0%)
1 Mean (SD); n (%)
2 Kruskal-Wallis rank sum test; Fisher's exact test

Estimate vax/no vax by demog

vax_clean1 %>% 
  tabyl(mstat_5, total_cov_vax) %>% 
  adorn_totals(c("row", "col")) %>%
  adorn_percentages("row") %>% 
  adorn_pct_formatting(rounding = "half up", digits = 0) %>%
  adorn_ns() %>%
  adorn_title("combined") %>% 
  gt()
mstat_5/total_cov_vax 0 1 2 3 4 5 6 7 Total
married 49% (3013) 2% (147) 13% (782) 22% (1362) 13% (790) 1% (82) 0% (16) 0% (6) 100% (6198)
unknown 46% (1478) 4% (120) 18% (590) 23% (741) 8% (262) 1% (33) 0% (11) 0% (1) 100% (3236)
unmarried 57% (2834) 3% (143) 15% (732) 18% (891) 7% (348) 1% (39) 0% (8) 0% (2) 100% (4997)
div_sep 55% (280) 3% (17) 13% (65) 19% (95) 8% (42) 1% (5) 1% (3) 0% (0) 100% (507)
widow 52% (161) 2% (7) 12% (38) 17% (51) 15% (47) 1% (2) 0% (1) 0% (0) 100% (307)
Total 51% (7766) 3% (434) 14% (2207) 21% (3140) 10% (1489) 1% (161) 0% (39) 0% (9) 100% (15245)
  

vax_clean1 %>% 
  tabyl(ethnic_3, total_cov_vax) %>% 
  adorn_totals(c("row", "col")) %>%
  adorn_percentages("row") %>% 
  adorn_pct_formatting(rounding = "half up", digits = 0) %>%
  adorn_ns() %>%
  adorn_title("combined") %>% 
  gt()
ethnic_3/total_cov_vax 0 1 2 3 4 5 6 7 Total
NON-HISPANIC 51% (7309) 3% (413) 14% (2078) 21% (2985) 10% (1417) 1% (154) 0% (37) 0% (8) 100% (14401)
UNKNOWN - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) 100% (0)
CHOOSE NOT TO DISCLOSE - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) 100% (0)
HISPANIC 46% (140) 4% (12) 21% (62) 22% (65) 6% (19) 0% (1) 1% (2) 0% (1) 100% (302)
NA 58% (317) 2% (9) 12% (67) 17% (90) 10% (53) 1% (6) 0% (0) 0% (0) 100% (542)
Total 51% (7766) 3% (434) 14% (2207) 21% (3140) 10% (1489) 1% (161) 0% (39) 0% (9) 100% (15245)
  

vax_clean1 %>% 
  tabyl(race_5, total_cov_vax) %>% 
  adorn_totals(c("row", "col")) %>%
  adorn_percentages("row") %>% 
  adorn_pct_formatting(rounding = "half up", digits = 0) %>%
  adorn_ns() %>%
  adorn_title("combined") %>% 
  gt()
race_5/total_cov_vax 0 1 2 3 4 5 6 7 Total
WHITE OR CAUCASIAN 51% (6756) 3% (380) 14% (1863) 21% (2746) 10% (1297) 1% (147) 0% (34) 0% (7) 100% (13230)
BLACK OR AFRICAN AMERICAN 53% (504) 2% (20) 18% (169) 18% (166) 8% (80) 0% (4) 0% (2) 0% (1) 100% (946)
Other 54% (344) 3% (20) 17% (110) 18% (112) 7% (46) 1% (4) 0% (2) 0% (0) 100% (638)
ASIAN 35% (130) 4% (14) 15% (56) 29% (107) 16% (61) 1% (5) 0% (1) 0% (1) 100% (375)
AMERICAN INDIAN AND ALASKA NATIVE 57% (32) 0% (0) 16% (9) 16% (9) 9% (5) 2% (1) 0% (0) 0% (0) 100% (56)
Total 51% (7766) 3% (434) 14% (2207) 21% (3140) 10% (1489) 1% (161) 0% (39) 0% (9) 100% (15245)
NA

Prelim Vax Models

Model 1: Flu 2021 + RPL_THEMES

Flu2021_SVI <- glm(flu_2021 ~ age_yrs + mstat_5 + race_5 + lang_3 + relig_affil
               + gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES,
              family = "binomial",
              data = vax_clean1)
summary(Flu2021_SVI )

Call:
glm(formula = flu_2021 ~ age_yrs + mstat_5 + race_5 + lang_3 + 
    relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES, 
    family = "binomial", data = vax_clean1)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.4060  -0.7430  -0.6046  -0.4186   3.1853  

Coefficients:
                                          Estimate Std. Error z value Pr(>|z|)    
(Intercept)                              4.324e-01  1.314e-01   3.290 0.001003 ** 
age_yrs                                  2.567e-03  1.400e-03   1.833 0.066821 .  
mstat_5unknown                          -1.400e-01  6.425e-02  -2.178 0.029380 *  
mstat_5unmarried                        -3.650e-01  6.201e-02  -5.886 3.95e-09 ***
mstat_5div_sep                          -2.214e-01  1.338e-01  -1.655 0.097961 .  
mstat_5widow                            -1.405e-01  1.554e-01  -0.904 0.366027    
race_5BLACK OR AFRICAN AMERICAN         -3.273e-01  1.058e-01  -3.095 0.001966 ** 
race_5Other                             -2.775e-01  1.469e-01  -1.888 0.058962 .  
race_5ASIAN                              4.138e-01  1.331e-01   3.108 0.001880 ** 
race_5AMERICAN INDIAN AND ALASKA NATIVE -2.373e-01  4.129e-01  -0.575 0.565395    
lang_3Other                             -5.620e-01  2.636e-01  -2.132 0.032993 *  
relig_affilno                           -8.817e-02  4.788e-02  -1.841 0.065560 .  
genderfemale                             1.722e-01  4.651e-02   3.702 0.000214 ***
ethnic_3HISPANIC                         2.787e-01  1.655e-01   1.684 0.092259 .  
pop_dens                                -4.114e-05  1.008e-05  -4.083 4.45e-05 ***
r_pct                                   -2.624e-02  1.567e-03 -16.746  < 2e-16 ***
RPL_THEMES                              -1.321e+00  9.725e-02 -13.582  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 12367  on 11566  degrees of freedom
Residual deviance: 11745  on 11550  degrees of freedom
  (3678 observations deleted due to missingness)
AIC: 11779

Number of Fisher Scoring iterations: 4
broom::glance(Flu2021_SVI )
broom::tidy(Flu2021_SVI , exponentiate = TRUE)
model_performance(Flu2021_SVI )
# Indices of model performance

AIC       |       BIC | Tjur's R2 |  RMSE | Sigma | Log_loss | Score_log | Score_spherical |   PCP
--------------------------------------------------------------------------------------------------
11779.314 | 11904.364 |     0.056 | 0.406 | 1.008 |    0.508 |      -Inf |       1.219e-04 | 0.669
tbl_regression(Flu2021_SVI, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEMES ~ "Total SVI", mstat_5 ~ "Marital Status", pop_dens ~ "Population Density"), exponentiate = TRUE)
Characteristic OR1 95% CI1 p-value
Age 1.00 1.00, 1.01 0.067
Marital Status
    married
    unknown 0.87 0.77, 0.99 0.029
    unmarried 0.69 0.61, 0.78 <0.001
    div_sep 0.80 0.61, 1.04 0.10
    widow 0.87 0.64, 1.17 0.4
Race
    WHITE OR CAUCASIAN
    BLACK OR AFRICAN AMERICAN 0.72 0.58, 0.88 0.002
    Other 0.76 0.56, 1.00 0.059
    ASIAN 1.51 1.16, 1.96 0.002
    AMERICAN INDIAN AND ALASKA NATIVE 0.79 0.33, 1.69 0.6
English Speaking
    English
    Other 0.57 0.33, 0.94 0.033
Any Religious Affiliation
    yes
    no 0.92 0.83, 1.01 0.066
Gender
    male
    female 1.19 1.08, 1.30 <0.001
Ethnicity
    NON-HISPANIC
    HISPANIC 1.32 0.95, 1.82 0.092
Population Density 1.00 1.00, 1.00 <0.001
r_pct 0.97 0.97, 0.98 <0.001
Total SVI 0.27 0.22, 0.32 <0.001
1 OR = Odds Ratio, CI = Confidence Interval

Model 2: Flu_2021 + RPL_THEMESx4

Flu2021_4 <- glm(flu_2021 ~  age_yrs + race_5 + mstat_5 + lang_3 + relig_affil 
       + gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 + RPL_THEME4,
              family = "binomial",
              data = vax_clean1)
summary(Flu2021_4)

Call:
glm(formula = flu_2021 ~ age_yrs + race_5 + mstat_5 + lang_3 + 
    relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 + 
    RPL_THEME2 + RPL_THEME3 + RPL_THEME4, family = "binomial", 
    data = vax_clean1)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.3362  -0.7469  -0.5995  -0.4171   3.0713  

Coefficients:
                                          Estimate Std. Error z value Pr(>|z|)    
(Intercept)                              4.056e-01  1.603e-01   2.531 0.011381 *  
age_yrs                                  2.738e-03  1.407e-03   1.946 0.051617 .  
race_5BLACK OR AFRICAN AMERICAN         -2.728e-01  1.069e-01  -2.553 0.010693 *  
race_5Other                             -2.947e-01  1.478e-01  -1.994 0.046156 *  
race_5ASIAN                              3.711e-01  1.344e-01   2.760 0.005778 ** 
race_5AMERICAN INDIAN AND ALASKA NATIVE -1.838e-01  4.155e-01  -0.442 0.658183    
mstat_5unknown                          -1.307e-01  6.458e-02  -2.024 0.042973 *  
mstat_5unmarried                        -3.560e-01  6.237e-02  -5.708 1.14e-08 ***
mstat_5div_sep                          -2.220e-01  1.347e-01  -1.648 0.099351 .  
mstat_5widow                            -1.146e-01  1.556e-01  -0.737 0.461409    
lang_3Other                             -5.755e-01  2.639e-01  -2.180 0.029235 *  
relig_affilno                           -8.194e-02  4.823e-02  -1.699 0.089338 .  
genderfemale                             1.689e-01  4.676e-02   3.612 0.000303 ***
ethnic_3HISPANIC                         2.844e-01  1.658e-01   1.715 0.086298 .  
pop_dens                                -3.854e-05  1.034e-05  -3.729 0.000193 ***
r_pct                                   -2.300e-02  1.862e-03 -12.351  < 2e-16 ***
RPL_THEME1                              -7.685e-01  1.395e-01  -5.507 3.64e-08 ***
RPL_THEME2                              -6.473e-01  1.212e-01  -5.340 9.31e-08 ***
RPL_THEME3                              -6.151e-02  9.574e-02  -0.643 0.520529    
RPL_THEME4                              -1.842e-01  1.020e-01  -1.807 0.070837 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 12260  on 11496  degrees of freedom
Residual deviance: 11629  on 11477  degrees of freedom
  (3748 observations deleted due to missingness)
AIC: 11669

Number of Fisher Scoring iterations: 4
broom::glance(Flu2021_4)
broom::tidy(Flu2021_4, exponentiate = TRUE)
model_performance(Flu2021_4)
# Indices of model performance

AIC       |       BIC | Tjur's R2 |  RMSE | Sigma | Log_loss | Score_log | Score_spherical |   PCP
--------------------------------------------------------------------------------------------------
11669.325 | 11816.322 |     0.057 | 0.405 | 1.007 |    0.506 |      -Inf |       1.203e-04 | 0.671
tbl_regression(Flu2021_4, label = list(age_yrs ~ "Age", race_5 ~ "Race", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", mstat_5 ~ "Marital Status", RPL_THEME4 ~ "Housing and Transportation", pop_dens ~ "Population Density"), exponentiate = TRUE)
Characteristic OR1 95% CI1 p-value
Age 1.00 1.00, 1.01 0.052
Race
    WHITE OR CAUCASIAN
    BLACK OR AFRICAN AMERICAN 0.76 0.62, 0.94 0.011
    Other 0.74 0.55, 0.99 0.046
    ASIAN 1.45 1.11, 1.88 0.006
    AMERICAN INDIAN AND ALASKA NATIVE 0.83 0.35, 1.80 0.7
Marital Status
    married
    unknown 0.88 0.77, 1.00 0.043
    unmarried 0.70 0.62, 0.79 <0.001
    div_sep 0.80 0.61, 1.04 0.10
    widow 0.89 0.65, 1.20 0.5
English Speaking
    English
    Other 0.56 0.33, 0.92 0.029
Any Religious Affiliation
    yes
    no 0.92 0.84, 1.01 0.089
Gender
    male
    female 1.18 1.08, 1.30 <0.001
Ethnicity
    NON-HISPANIC
    HISPANIC 1.33 0.95, 1.83 0.086
Population Density 1.00 1.00, 1.00 <0.001
r_pct 0.98 0.97, 0.98 <0.001
Soceioeconomic Status 0.46 0.35, 0.61 <0.001
Household Composition 0.52 0.41, 0.66 <0.001
Minority Status and Language 0.94 0.78, 1.13 0.5
Housing and Transportation 0.83 0.68, 1.02 0.071
1 OR = Odds Ratio, CI = Confidence Interval

Model 3: Total Flu + RPL_THEMES

totalflu_SVI <- lm(total_flu ~ age_yrs + mstat_5 + race_5 + lang_3 + relig_affil
               + gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES, data = vax_clean1) 
summary(totalflu_SVI)

Call:
lm(formula = total_flu ~ age_yrs + mstat_5 + race_5 + lang_3 + 
    relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES, 
    data = vax_clean1)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.7902 -1.8605 -0.8196  1.7601  6.2768 

Coefficients:
                                          Estimate Std. Error t value Pr(>|t|)    
(Intercept)                              4.226e+00  1.182e-01  35.750  < 2e-16 ***
age_yrs                                 -6.299e-03  1.294e-03  -4.869 1.13e-06 ***
mstat_5unknown                          -5.278e-01  5.989e-02  -8.813  < 2e-16 ***
mstat_5unmarried                        -3.322e-01  5.695e-02  -5.833 5.59e-09 ***
mstat_5div_sep                          -3.101e-01  1.199e-01  -2.585 0.009741 ** 
mstat_5widow                            -2.977e-01  1.505e-01  -1.978 0.047954 *  
race_5BLACK OR AFRICAN AMERICAN         -3.626e-01  9.428e-02  -3.846 0.000121 ***
race_5Other                             -3.144e-01  1.304e-01  -2.410 0.015967 *  
race_5ASIAN                              3.350e-01  1.418e-01   2.363 0.018131 *  
race_5AMERICAN INDIAN AND ALASKA NATIVE  2.004e-01  3.662e-01   0.547 0.584296    
lang_3Other                             -6.062e-01  2.232e-01  -2.715 0.006632 ** 
relig_affilno                           -1.856e-01  4.405e-02  -4.212 2.55e-05 ***
genderfemale                             1.592e-01  4.288e-02   3.713 0.000206 ***
ethnic_3HISPANIC                         3.271e-01  1.584e-01   2.064 0.038994 *  
pop_dens                                -2.767e-05  5.625e-06  -4.919 8.82e-07 ***
r_pct                                   -2.224e-02  1.373e-03 -16.194  < 2e-16 ***
RPL_THEMES                              -1.333e+00  8.491e-02 -15.704  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.279 on 11550 degrees of freedom
  (3678 observations deleted due to missingness)
Multiple R-squared:  0.05746,   Adjusted R-squared:  0.05615 
F-statistic: 44.01 on 16 and 11550 DF,  p-value: < 2.2e-16
broom::glance(totalflu_SVI)
broom::tidy(totalflu_SVI, exponentiate = TRUE)
model_performance(totalflu_SVI)
# Indices of model performance

AIC       |       BIC |    R2 | R2 (adj.) |  RMSE | Sigma
---------------------------------------------------------
51903.558 | 52035.964 | 0.057 |     0.056 | 2.278 | 2.279
tbl_regression(totalflu_SVI, label = list(age_yrs ~ "Age", pop_dens ~ "Population density", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEMES ~ "Total SVI", mstat_5 ~ "Marital Status"))
Characteristic Beta 95% CI1 p-value
Age -0.01 -0.01, 0.00 <0.001
Marital Status
    married
    unknown -0.53 -0.65, -0.41 <0.001
    unmarried -0.33 -0.44, -0.22 <0.001
    div_sep -0.31 -0.55, -0.07 0.010
    widow -0.30 -0.59, 0.00 0.048
race_5
    WHITE OR CAUCASIAN
    BLACK OR AFRICAN AMERICAN -0.36 -0.55, -0.18 <0.001
    Other -0.31 -0.57, -0.06 0.016
    ASIAN 0.34 0.06, 0.61 0.018
    AMERICAN INDIAN AND ALASKA NATIVE 0.20 -0.52, 0.92 0.6
English Speaking
    English
    Other -0.61 -1.0, -0.17 0.007
Any Religious Affiliation
    yes
    no -0.19 -0.27, -0.10 <0.001
Gender
    male
    female 0.16 0.08, 0.24 <0.001
Ethnicity
    NON-HISPANIC
    HISPANIC 0.33 0.02, 0.64 0.039
Population density 0.00 0.00, 0.00 <0.001
r_pct -0.02 -0.02, -0.02 <0.001
Total SVI -1.3 -1.5, -1.2 <0.001
1 CI = Confidence Interval

Model 4: Total Flu + RPL_THEMESx4

totalflu_4 <- lm(total_flu ~ age_yrs + mstat_5 + race_5 + lang_3 + relig_affil
               + gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 + RPL_THEME4, data = vax_clean1) 
summary(totalflu_4)

Call:
lm(formula = total_flu ~ age_yrs + mstat_5 + race_5 + lang_3 + 
    relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 + 
    RPL_THEME2 + RPL_THEME3 + RPL_THEME4, data = vax_clean1)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.7702 -1.8459 -0.8139  1.7477  6.2936 

Coefficients:
                                          Estimate Std. Error t value Pr(>|t|)    
(Intercept)                              4.191e+00  1.434e-01  29.215  < 2e-16 ***
age_yrs                                 -6.070e-03  1.296e-03  -4.685 2.83e-06 ***
mstat_5unknown                          -5.114e-01  5.995e-02  -8.530  < 2e-16 ***
mstat_5unmarried                        -3.219e-01  5.706e-02  -5.641 1.73e-08 ***
mstat_5div_sep                          -2.953e-01  1.199e-01  -2.463 0.013808 *  
mstat_5widow                            -2.688e-01  1.508e-01  -1.782 0.074754 .  
race_5BLACK OR AFRICAN AMERICAN         -3.036e-01  9.524e-02  -3.187 0.001441 ** 
race_5Other                             -3.238e-01  1.307e-01  -2.478 0.013232 *  
race_5ASIAN                              3.028e-01  1.429e-01   2.119 0.034136 *  
race_5AMERICAN INDIAN AND ALASKA NATIVE  2.816e-01  3.703e-01   0.760 0.447125    
lang_3Other                             -6.082e-01  2.242e-01  -2.712 0.006689 ** 
relig_affilno                           -1.790e-01  4.418e-02  -4.053 5.09e-05 ***
genderfemale                             1.558e-01  4.293e-02   3.629 0.000286 ***
ethnic_3HISPANIC                         3.345e-01  1.586e-01   2.109 0.034956 *  
pop_dens                                -2.577e-05  5.696e-06  -4.525 6.10e-06 ***
r_pct                                   -1.907e-02  1.635e-03 -11.661  < 2e-16 ***
RPL_THEME1                              -8.527e-01  1.242e-01  -6.864 7.05e-12 ***
RPL_THEME2                              -5.598e-01  1.089e-01  -5.143 2.76e-07 ***
RPL_THEME3                              -6.353e-02  8.918e-02  -0.712 0.476246    
RPL_THEME4                              -1.816e-01  9.248e-02  -1.964 0.049542 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.275 on 11477 degrees of freedom
  (3748 observations deleted due to missingness)
Multiple R-squared:  0.05859,   Adjusted R-squared:  0.05703 
F-statistic: 37.59 on 19 and 11477 DF,  p-value: < 2.2e-16
broom::glance(totalflu_4)
broom::tidy(totalflu_4, exponentiate = TRUE)
model_performance(totalflu_4)
# Indices of model performance

AIC       |       BIC |    R2 | R2 (adj.) |  RMSE | Sigma
---------------------------------------------------------
51549.376 | 51703.723 | 0.059 |     0.057 | 2.273 | 2.275
tbl_regression(totalflu_4, label = list(age_yrs ~ "Age", pop_dens ~ "Population density", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", mstat_5 ~ "Marital Status", RPL_THEME4 ~ "Housing and Transportation", mstat_5 ~ "Marital Status"))
Characteristic Beta 95% CI1 p-value
Age -0.01 -0.01, 0.00 <0.001
Marital Status
    married
    unknown -0.51 -0.63, -0.39 <0.001
    unmarried -0.32 -0.43, -0.21 <0.001
    div_sep -0.30 -0.53, -0.06 0.014
    widow -0.27 -0.56, 0.03 0.075
race_5
    WHITE OR CAUCASIAN
    BLACK OR AFRICAN AMERICAN -0.30 -0.49, -0.12 0.001
    Other -0.32 -0.58, -0.07 0.013
    ASIAN 0.30 0.02, 0.58 0.034
    AMERICAN INDIAN AND ALASKA NATIVE 0.28 -0.44, 1.0 0.4
English Speaking
    English
    Other -0.61 -1.0, -0.17 0.007
Any Religious Affiliation
    yes
    no -0.18 -0.27, -0.09 <0.001
Gender
    male
    female 0.16 0.07, 0.24 <0.001
Ethnicity
    NON-HISPANIC
    HISPANIC 0.33 0.02, 0.65 0.035
Population density 0.00 0.00, 0.00 <0.001
r_pct -0.02 -0.02, -0.02 <0.001
Soceioeconomic Status -0.85 -1.1, -0.61 <0.001
Household Composition -0.56 -0.77, -0.35 <0.001
Minority Status and Language -0.06 -0.24, 0.11 0.5
Housing and Transportation -0.18 -0.36, 0.00 0.050
1 CI = Confidence Interval

Model 5: Total COVID + RPL_THEMES

totalcov_SVI <- lm(total_cov_vax ~ age_yrs + mstat_5 + race_5 + lang_3 + relig_affil
               + gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES, data = vax_clean1) 
summary(totalcov_SVI)

Call:
lm(formula = total_cov_vax ~ age_yrs + mstat_5 + race_5 + lang_3 + 
    relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES, 
    data = vax_clean1)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.7849 -1.3433 -0.3826  1.3461  5.9971 

Coefficients:
                                          Estimate Std. Error t value Pr(>|t|)    
(Intercept)                              2.395e+00  7.867e-02  30.447  < 2e-16 ***
age_yrs                                  7.865e-03  8.608e-04   9.137  < 2e-16 ***
mstat_5unknown                           9.908e-02  3.985e-02   2.486 0.012920 *  
mstat_5unmarried                        -2.015e-01  3.790e-02  -5.318 1.07e-07 ***
mstat_5div_sep                          -2.086e-01  7.981e-02  -2.614 0.008962 ** 
mstat_5widow                            -3.484e-01  1.002e-01  -3.479 0.000506 ***
race_5BLACK OR AFRICAN AMERICAN         -1.823e-01  6.274e-02  -2.906 0.003667 ** 
race_5Other                             -1.078e-01  8.680e-02  -1.242 0.214408    
race_5ASIAN                              3.855e-01  9.433e-02   4.086 4.41e-05 ***
race_5AMERICAN INDIAN AND ALASKA NATIVE -2.358e-01  2.437e-01  -0.968 0.333200    
lang_3Other                             -3.219e-01  1.485e-01  -2.167 0.030256 *  
relig_affilno                           -2.536e-02  2.931e-02  -0.865 0.386999    
genderfemale                             6.411e-02  2.853e-02   2.247 0.024673 *  
ethnic_3HISPANIC                         1.965e-01  1.054e-01   1.864 0.062373 .  
pop_dens                                -2.160e-05  3.743e-06  -5.772 8.05e-09 ***
r_pct                                   -1.922e-02  9.137e-04 -21.036  < 2e-16 ***
RPL_THEMES                              -9.924e-01  5.650e-02 -17.565  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.517 on 11550 degrees of freedom
  (3678 observations deleted due to missingness)
Multiple R-squared:  0.0799,    Adjusted R-squared:  0.07862 
F-statistic: 62.68 on 16 and 11550 DF,  p-value: < 2.2e-16
broom::glance(totalcov_SVI)
broom::tidy(totalcov_SVI, exponentiate = TRUE)
model_performance(totalcov_SVI)
# Indices of model performance

AIC       |       BIC |    R2 | R2 (adj.) |  RMSE | Sigma
---------------------------------------------------------
42480.231 | 42612.637 | 0.080 |     0.079 | 1.516 | 1.517
tbl_regression(totalcov_SVI, label = list(age_yrs ~ "Age", pop_dens ~ "Population density", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEMES ~ "Total SVI", mstat_5 ~ "Marital Status"))
Characteristic Beta 95% CI1 p-value
Age 0.01 0.01, 0.01 <0.001
Marital Status
    married
    unknown 0.10 0.02, 0.18 0.013
    unmarried -0.20 -0.28, -0.13 <0.001
    div_sep -0.21 -0.37, -0.05 0.009
    widow -0.35 -0.54, -0.15 <0.001
race_5
    WHITE OR CAUCASIAN
    BLACK OR AFRICAN AMERICAN -0.18 -0.31, -0.06 0.004
    Other -0.11 -0.28, 0.06 0.2
    ASIAN 0.39 0.20, 0.57 <0.001
    AMERICAN INDIAN AND ALASKA NATIVE -0.24 -0.71, 0.24 0.3
English Speaking
    English
    Other -0.32 -0.61, -0.03 0.030
Any Religious Affiliation
    yes
    no -0.03 -0.08, 0.03 0.4
Gender
    male
    female 0.06 0.01, 0.12 0.025
Ethnicity
    NON-HISPANIC
    HISPANIC 0.20 -0.01, 0.40 0.062
Population density 0.00 0.00, 0.00 <0.001
r_pct -0.02 -0.02, -0.02 <0.001
Total SVI -0.99 -1.1, -0.88 <0.001
1 CI = Confidence Interval

Model 6: Total COVID + RPL_THEMESx4

totalcov_4 <- lm(total_cov_vax ~ age_yrs + mstat_5 + race_5 + lang_3 + relig_affil
               + gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 + RPL_THEME4, data = vax_clean1) 
summary(totalcov_4)

Call:
lm(formula = total_cov_vax ~ age_yrs + mstat_5 + race_5 + lang_3 + 
    relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 + 
    RPL_THEME2 + RPL_THEME3 + RPL_THEME4, data = vax_clean1)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.7200 -1.3354 -0.4144  1.3286  5.9428 

Coefficients:
                                          Estimate Std. Error t value Pr(>|t|)    
(Intercept)                              2.341e+00  9.545e-02  24.525  < 2e-16 ***
age_yrs                                  7.956e-03  8.620e-04   9.229  < 2e-16 ***
mstat_5unknown                           1.064e-01  3.989e-02   2.667 0.007667 ** 
mstat_5unmarried                        -1.943e-01  3.797e-02  -5.118 3.14e-07 ***
mstat_5div_sep                          -2.010e-01  7.979e-02  -2.519 0.011793 *  
mstat_5widow                            -3.247e-01  1.003e-01  -3.235 0.001218 ** 
race_5BLACK OR AFRICAN AMERICAN         -1.364e-01  6.337e-02  -2.153 0.031370 *  
race_5Other                             -1.143e-01  8.695e-02  -1.315 0.188628    
race_5ASIAN                              3.420e-01  9.510e-02   3.596 0.000324 ***
race_5AMERICAN INDIAN AND ALASKA NATIVE -1.722e-01  2.464e-01  -0.699 0.484776    
lang_3Other                             -3.459e-01  1.492e-01  -2.319 0.020433 *  
relig_affilno                           -2.276e-02  2.939e-02  -0.774 0.438867    
genderfemale                             6.099e-02  2.857e-02   2.135 0.032760 *  
ethnic_3HISPANIC                         1.946e-01  1.055e-01   1.844 0.065215 .  
pop_dens                                -1.952e-05  3.790e-06  -5.151 2.64e-07 ***
r_pct                                   -1.660e-02  1.088e-03 -15.260  < 2e-16 ***
RPL_THEME1                              -7.149e-01  8.266e-02  -8.649  < 2e-16 ***
RPL_THEME2                              -3.517e-01  7.244e-02  -4.855 1.22e-06 ***
RPL_THEME3                               1.960e-03  5.934e-02   0.033 0.973651    
RPL_THEME4                              -1.332e-01  6.154e-02  -2.164 0.030503 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.514 on 11477 degrees of freedom
  (3748 observations deleted due to missingness)
Multiple R-squared:  0.08197,   Adjusted R-squared:  0.08045 
F-statistic: 53.94 on 19 and 11477 DF,  p-value: < 2.2e-16
broom::glance(totalcov_4)
broom::tidy(totalcov_4, exponentiate = TRUE)
model_performance(totalcov_4)
# Indices of model performance

AIC       |       BIC |    R2 | R2 (adj.) |  RMSE | Sigma
---------------------------------------------------------
42182.135 | 42336.482 | 0.082 |     0.080 | 1.512 | 1.514
tbl_regression(totalcov_4, label = list(age_yrs ~ "Age", pop_dens ~ "Population density", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", mstat_5 ~ "Marital Status", RPL_THEME4 ~ "Housing and Transportation", mstat_5 ~ "Marital Status"))
Characteristic Beta 95% CI1 p-value
Age 0.01 0.01, 0.01 <0.001
Marital Status
    married
    unknown 0.11 0.03, 0.18 0.008
    unmarried -0.19 -0.27, -0.12 <0.001
    div_sep -0.20 -0.36, -0.04 0.012
    widow -0.32 -0.52, -0.13 0.001
race_5
    WHITE OR CAUCASIAN
    BLACK OR AFRICAN AMERICAN -0.14 -0.26, -0.01 0.031
    Other -0.11 -0.28, 0.06 0.2
    ASIAN 0.34 0.16, 0.53 <0.001
    AMERICAN INDIAN AND ALASKA NATIVE -0.17 -0.66, 0.31 0.5
English Speaking
    English
    Other -0.35 -0.64, -0.05 0.020
Any Religious Affiliation
    yes
    no -0.02 -0.08, 0.03 0.4
Gender
    male
    female 0.06 0.01, 0.12 0.033
Ethnicity
    NON-HISPANIC
    HISPANIC 0.19 -0.01, 0.40 0.065
Population density 0.00 0.00, 0.00 <0.001
r_pct -0.02 -0.02, -0.01 <0.001
Soceioeconomic Status -0.71 -0.88, -0.55 <0.001
Household Composition -0.35 -0.49, -0.21 <0.001
Minority Status and Language 0.00 -0.11, 0.12 >0.9
Housing and Transportation -0.13 -0.25, -0.01 0.031
1 CI = Confidence Interval

Model 7: Any pneum + RPL_THEMES

any_pneum_SVI <- lm(any_pneum ~ age_yrs + mstat_5 + race_5 + lang_3 + relig_affil
               + gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES, data = vax_clean1) 
summary(any_pneum_SVI)

Call:
lm(formula = any_pneum ~ age_yrs + mstat_5 + race_5 + lang_3 + 
    relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES, 
    data = vax_clean1)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.0482 -0.6433 -0.5122  0.4341  8.3621 

Coefficients:
                                          Estimate Std. Error t value Pr(>|t|)    
(Intercept)                              8.565e-01  4.648e-02  18.426  < 2e-16 ***
age_yrs                                  2.806e-03  5.086e-04   5.517 3.52e-08 ***
mstat_5unknown                          -7.952e-02  2.355e-02  -3.377 0.000734 ***
mstat_5unmarried                        -3.995e-02  2.239e-02  -1.784 0.074418 .  
mstat_5div_sep                          -3.674e-02  4.716e-02  -0.779 0.435979    
mstat_5widow                            -4.199e-02  5.918e-02  -0.710 0.477936    
race_5BLACK OR AFRICAN AMERICAN         -6.742e-02  3.707e-02  -1.819 0.068981 .  
race_5Other                             -6.571e-02  5.129e-02  -1.281 0.200160    
race_5ASIAN                              1.133e-02  5.574e-02   0.203 0.838974    
race_5AMERICAN INDIAN AND ALASKA NATIVE  8.304e-02  1.440e-01   0.577 0.564118    
lang_3Other                             -4.564e-02  8.777e-02  -0.520 0.603102    
relig_affilno                           -2.682e-02  1.732e-02  -1.549 0.121526    
genderfemale                            -6.215e-02  1.686e-02  -3.686 0.000229 ***
ethnic_3HISPANIC                         5.187e-02  6.229e-02   0.833 0.404995    
pop_dens                                -5.140e-06  2.212e-06  -2.324 0.020146 *  
r_pct                                   -4.251e-03  5.399e-04  -7.873 3.76e-15 ***
RPL_THEMES                              -2.088e-01  3.338e-02  -6.256 4.10e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8961 on 11550 degrees of freedom
  (3678 observations deleted due to missingness)
Multiple R-squared:  0.01667,   Adjusted R-squared:  0.01531 
F-statistic: 12.24 on 16 and 11550 DF,  p-value: < 2.2e-16
broom::glance(any_pneum_SVI)
broom::tidy(any_pneum_SVI, exponentiate = TRUE)
model_performance(any_pneum_SVI)
# Indices of model performance

AIC       |       BIC |    R2 | R2 (adj.) |  RMSE | Sigma
---------------------------------------------------------
30307.227 | 30439.633 | 0.017 |     0.015 | 0.895 | 0.896
tbl_regression(any_pneum_SVI, label = list(age_yrs ~ "Age", pop_dens ~ "Population density", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEMES ~ "Total SVI", mstat_5 ~ "Marital Status"))
Characteristic Beta 95% CI1 p-value
Age 0.00 0.00, 0.00 <0.001
Marital Status
    married
    unknown -0.08 -0.13, -0.03 <0.001
    unmarried -0.04 -0.08, 0.00 0.074
    div_sep -0.04 -0.13, 0.06 0.4
    widow -0.04 -0.16, 0.07 0.5
race_5
    WHITE OR CAUCASIAN
    BLACK OR AFRICAN AMERICAN -0.07 -0.14, 0.01 0.069
    Other -0.07 -0.17, 0.03 0.2
    ASIAN 0.01 -0.10, 0.12 0.8
    AMERICAN INDIAN AND ALASKA NATIVE 0.08 -0.20, 0.37 0.6
English Speaking
    English
    Other -0.05 -0.22, 0.13 0.6
Any Religious Affiliation
    yes
    no -0.03 -0.06, 0.01 0.12
Gender
    male
    female -0.06 -0.10, -0.03 <0.001
Ethnicity
    NON-HISPANIC
    HISPANIC 0.05 -0.07, 0.17 0.4
Population density 0.00 0.00, 0.00 0.020
r_pct 0.00 -0.01, 0.00 <0.001
Total SVI -0.21 -0.27, -0.14 <0.001
1 CI = Confidence Interval

Model 8: Any pneumo + RPL_THEMESx4

any_pneum_4 <- lm(any_pneum ~ age_yrs + mstat_5 + race_5 + lang_3 + relig_affil
               + gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 + RPL_THEME4, data = vax_clean1) 
summary(any_pneum_4)

Call:
lm(formula = any_pneum ~ age_yrs + mstat_5 + race_5 + lang_3 + 
    relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 + 
    RPL_THEME2 + RPL_THEME3 + RPL_THEME4, data = vax_clean1)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.0106 -0.6439 -0.5091  0.4362  8.4083 

Coefficients:
                                          Estimate Std. Error t value Pr(>|t|)    
(Intercept)                              8.646e-01  5.651e-02  15.301  < 2e-16 ***
age_yrs                                  2.794e-03  5.104e-04   5.474 4.49e-08 ***
mstat_5unknown                          -7.893e-02  2.362e-02  -3.342 0.000835 ***
mstat_5unmarried                        -4.224e-02  2.248e-02  -1.879 0.060244 .  
mstat_5div_sep                          -3.957e-02  4.724e-02  -0.838 0.402246    
mstat_5widow                            -3.536e-02  5.941e-02  -0.595 0.551701    
race_5BLACK OR AFRICAN AMERICAN         -5.927e-02  3.752e-02  -1.580 0.114207    
race_5Other                             -6.544e-02  5.148e-02  -1.271 0.203701    
race_5ASIAN                             -9.381e-04  5.630e-02  -0.017 0.986707    
race_5AMERICAN INDIAN AND ALASKA NATIVE  1.040e-01  1.459e-01   0.713 0.475788    
lang_3Other                             -6.830e-02  8.833e-02  -0.773 0.439400    
relig_affilno                           -2.542e-02  1.740e-02  -1.461 0.144151    
genderfemale                            -6.326e-02  1.691e-02  -3.741 0.000185 ***
ethnic_3HISPANIC                         4.998e-02  6.248e-02   0.800 0.423751    
pop_dens                                -5.515e-06  2.244e-06  -2.458 0.014000 *  
r_pct                                   -3.736e-03  6.442e-04  -5.799 6.83e-09 ***
RPL_THEME1                              -7.921e-02  4.894e-02  -1.619 0.105569    
RPL_THEME2                              -1.499e-01  4.289e-02  -3.494 0.000477 ***
RPL_THEME3                              -1.176e-02  3.513e-02  -0.335 0.737906    
RPL_THEME4                              -3.125e-02  3.643e-02  -0.858 0.391067    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8962 on 11477 degrees of freedom
  (3748 observations deleted due to missingness)
Multiple R-squared:  0.01741,   Adjusted R-squared:  0.01578 
F-statistic:  10.7 on 19 and 11477 DF,  p-value: < 2.2e-16
broom::glance(any_pneum_4)
broom::tidy(any_pneum_4, exponentiate = TRUE)
model_performance(any_pneum_4)
# Indices of model performance

AIC       |       BIC |    R2 | R2 (adj.) |  RMSE | Sigma
---------------------------------------------------------
30128.890 | 30283.237 | 0.017 |     0.016 | 0.895 | 0.896
tbl_regression(any_pneum_4, label = list(age_yrs ~ "Age", pop_dens ~ "Population density", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", mstat_5 ~ "Marital Status", RPL_THEME4 ~ "Housing and Transportation", mstat_5 ~ "Marital Status"))
Characteristic Beta 95% CI1 p-value
Age 0.00 0.00, 0.00 <0.001
Marital Status
    married
    unknown -0.08 -0.13, -0.03 <0.001
    unmarried -0.04 -0.09, 0.00 0.060
    div_sep -0.04 -0.13, 0.05 0.4
    widow -0.04 -0.15, 0.08 0.6
race_5
    WHITE OR CAUCASIAN
    BLACK OR AFRICAN AMERICAN -0.06 -0.13, 0.01 0.11
    Other -0.07 -0.17, 0.04 0.2
    ASIAN 0.00 -0.11, 0.11 >0.9
    AMERICAN INDIAN AND ALASKA NATIVE 0.10 -0.18, 0.39 0.5
English Speaking
    English
    Other -0.07 -0.24, 0.10 0.4
Any Religious Affiliation
    yes
    no -0.03 -0.06, 0.01 0.14
Gender
    male
    female -0.06 -0.10, -0.03 <0.001
Ethnicity
    NON-HISPANIC
    HISPANIC 0.05 -0.07, 0.17 0.4
Population density 0.00 0.00, 0.00 0.014
r_pct 0.00 0.00, 0.00 <0.001
Soceioeconomic Status -0.08 -0.18, 0.02 0.11
Household Composition -0.15 -0.23, -0.07 <0.001
Minority Status and Language -0.01 -0.08, 0.06 0.7
Housing and Transportation -0.03 -0.10, 0.04 0.4
1 CI = Confidence Interval

Model 9: Shingrix + RPL_THEMES

vax_clean1 %>% 
mutate(age_2 = case_when(
age_yrs<49.99 ~ 0,
TRUE ~ 1)) -> vax_clean2
Shingrix_SVI <- lm(total_shingrix ~ age_2 + mstat_5 + race_5 + lang_3 + relig_affil
               + gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES, data = vax_clean2) 
summary(Shingrix_SVI)

Call:
lm(formula = total_shingrix ~ age_2 + mstat_5 + race_5 + lang_3 + 
    relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES, 
    data = vax_clean2)

Residuals:
    Min      1Q  Median      3Q     Max 
-0.6635 -0.3450 -0.0885  0.0404  4.5285 

Coefficients:
                                          Estimate Std. Error t value Pr(>|t|)    
(Intercept)                              3.208e-01  2.352e-02  13.640  < 2e-16 ***
age_2                                    3.681e-01  1.182e-02  31.143  < 2e-16 ***
mstat_5unknown                          -3.288e-02  1.458e-02  -2.255 0.024161 *  
mstat_5unmarried                        -5.017e-02  1.350e-02  -3.715 0.000204 ***
mstat_5div_sep                          -6.495e-02  2.968e-02  -2.188 0.028682 *  
mstat_5widow                            -6.246e-02  3.686e-02  -1.695 0.090197 .  
race_5BLACK OR AFRICAN AMERICAN         -6.082e-02  2.333e-02  -2.607 0.009139 ** 
race_5Other                             -3.630e-02  3.228e-02  -1.125 0.260714    
race_5ASIAN                              6.670e-02  3.504e-02   1.903 0.057016 .  
race_5AMERICAN INDIAN AND ALASKA NATIVE -1.869e-03  9.062e-02  -0.021 0.983543    
lang_3Other                             -9.554e-02  5.524e-02  -1.730 0.083703 .  
relig_affilno                           -6.335e-03  1.091e-02  -0.581 0.561376    
genderfemale                             9.225e-03  1.061e-02   0.869 0.384619    
ethnic_3HISPANIC                         4.975e-02  3.918e-02   1.270 0.204252    
pop_dens                                -2.569e-06  1.391e-06  -1.846 0.064887 .  
r_pct                                   -4.122e-03  3.399e-04 -12.128  < 2e-16 ***
RPL_THEMES                              -2.279e-01  2.099e-02 -10.858  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.564 on 11550 degrees of freedom
  (3678 observations deleted due to missingness)
Multiple R-squared:  0.1205,    Adjusted R-squared:  0.1193 
F-statistic: 98.92 on 16 and 11550 DF,  p-value: < 2.2e-16
broom::glance(Shingrix_SVI)
broom::tidy(Shingrix_SVI, exponentiate = TRUE)
model_performance(Shingrix_SVI)
# Indices of model performance

AIC       |       BIC |    R2 | R2 (adj.) |  RMSE | Sigma
---------------------------------------------------------
19594.799 | 19727.205 | 0.121 |     0.119 | 0.564 | 0.564
tbl_regression(Shingrix_SVI, label = list(age_2 ~ "Age > 50", pop_dens ~ "Population density", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEMES ~ "Total SVI", mstat_5 ~ "Marital Status"))
Characteristic Beta 95% CI1 p-value
Age > 50 0.37 0.34, 0.39 <0.001
Marital Status
    married
    unknown -0.03 -0.06, 0.00 0.024
    unmarried -0.05 -0.08, -0.02 <0.001
    div_sep -0.06 -0.12, -0.01 0.029
    widow -0.06 -0.13, 0.01 0.090
race_5
    WHITE OR CAUCASIAN
    BLACK OR AFRICAN AMERICAN -0.06 -0.11, -0.02 0.009
    Other -0.04 -0.10, 0.03 0.3
    ASIAN 0.07 0.00, 0.14 0.057
    AMERICAN INDIAN AND ALASKA NATIVE 0.00 -0.18, 0.18 >0.9
English Speaking
    English
    Other -0.10 -0.20, 0.01 0.084
Any Religious Affiliation
    yes
    no -0.01 -0.03, 0.02 0.6
Gender
    male
    female 0.01 -0.01, 0.03 0.4
Ethnicity
    NON-HISPANIC
    HISPANIC 0.05 -0.03, 0.13 0.2
Population density 0.00 0.00, 0.00 0.065
r_pct 0.00 0.00, 0.00 <0.001
Total SVI -0.23 -0.27, -0.19 <0.001
1 CI = Confidence Interval

Model 10: Shingrix + RPL_THEMESx4

total_shingrix_4 <- lm(total_shingrix ~ age_2 + mstat_5 + race_5 + lang_3 + relig_affil
               + gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 + RPL_THEME4, data = vax_clean2) 
summary(total_shingrix_4)

Call:
lm(formula = total_shingrix ~ age_2 + mstat_5 + race_5 + lang_3 + 
    relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 + 
    RPL_THEME2 + RPL_THEME3 + RPL_THEME4, data = vax_clean2)

Residuals:
    Min      1Q  Median      3Q     Max 
-0.6572 -0.3381 -0.0930  0.0421  4.5538 

Coefficients:
                                          Estimate Std. Error t value Pr(>|t|)    
(Intercept)                              3.147e-01  3.073e-02  10.239  < 2e-16 ***
age_2                                    3.658e-01  1.182e-02  30.940  < 2e-16 ***
mstat_5unknown                          -3.281e-02  1.458e-02  -2.251 0.024424 *  
mstat_5unmarried                        -5.023e-02  1.351e-02  -3.718 0.000202 ***
mstat_5div_sep                          -6.614e-02  2.963e-02  -2.232 0.025628 *  
mstat_5widow                            -5.581e-02  3.688e-02  -1.513 0.130257    
race_5BLACK OR AFRICAN AMERICAN         -5.013e-02  2.353e-02  -2.131 0.033142 *  
race_5Other                             -3.617e-02  3.228e-02  -1.120 0.262607    
race_5ASIAN                              5.905e-02  3.528e-02   1.674 0.094204 .  
race_5AMERICAN INDIAN AND ALASKA NATIVE  1.562e-02  9.150e-02   0.171 0.864450    
lang_3Other                             -9.170e-02  5.540e-02  -1.655 0.097883 .  
relig_affilno                           -4.957e-03  1.092e-02  -0.454 0.649923    
genderfemale                             7.349e-03  1.061e-02   0.693 0.488393    
ethnic_3HISPANIC                         4.975e-02  3.917e-02   1.270 0.204014    
pop_dens                                -2.052e-06  1.407e-06  -1.458 0.144740    
r_pct                                   -3.593e-03  4.039e-04  -8.896  < 2e-16 ***
RPL_THEME1                              -1.712e-01  3.069e-02  -5.577 2.51e-08 ***
RPL_THEME2                              -6.480e-02  2.689e-02  -2.410 0.015982 *  
RPL_THEME3                              -2.983e-03  2.203e-02  -0.135 0.892308    
RPL_THEME4                              -3.573e-02  2.285e-02  -1.564 0.117873    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5621 on 11477 degrees of freedom
  (3748 observations deleted due to missingness)
Multiple R-squared:  0.1205,    Adjusted R-squared:  0.119 
F-statistic: 82.73 on 19 and 11477 DF,  p-value: < 2.2e-16
broom::glance(total_shingrix_4)
broom::tidy(total_shingrix_4, exponentiate = TRUE)
model_performance(total_shingrix_4)
# Indices of model performance

AIC       |       BIC |    R2 | R2 (adj.) |  RMSE | Sigma
---------------------------------------------------------
19401.044 | 19555.391 | 0.120 |     0.119 | 0.562 | 0.562
tbl_regression(total_shingrix_4, label = list(age_2 ~ "Age > 50", pop_dens ~ "Population density", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", mstat_5 ~ "Marital Status", RPL_THEME4 ~ "Housing and Transportation", mstat_5 ~ "Marital Status"))
Characteristic Beta 95% CI1 p-value
Age > 50 0.37 0.34, 0.39 <0.001
Marital Status
    married
    unknown -0.03 -0.06, 0.00 0.024
    unmarried -0.05 -0.08, -0.02 <0.001
    div_sep -0.07 -0.12, -0.01 0.026
    widow -0.06 -0.13, 0.02 0.13
race_5
    WHITE OR CAUCASIAN
    BLACK OR AFRICAN AMERICAN -0.05 -0.10, 0.00 0.033
    Other -0.04 -0.10, 0.03 0.3
    ASIAN 0.06 -0.01, 0.13 0.094
    AMERICAN INDIAN AND ALASKA NATIVE 0.02 -0.16, 0.19 0.9
English Speaking
    English
    Other -0.09 -0.20, 0.02 0.10
Any Religious Affiliation
    yes
    no 0.00 -0.03, 0.02 0.6
Gender
    male
    female 0.01 -0.01, 0.03 0.5
Ethnicity
    NON-HISPANIC
    HISPANIC 0.05 -0.03, 0.13 0.2
Population density 0.00 0.00, 0.00 0.14
r_pct 0.00 0.00, 0.00 <0.001
Soceioeconomic Status -0.17 -0.23, -0.11 <0.001
Household Composition -0.06 -0.12, -0.01 0.016
Minority Status and Language 0.00 -0.05, 0.04 0.9
Housing and Transportation -0.04 -0.08, 0.01 0.12
1 CI = Confidence Interval

```

LS0tCnRpdGxlOiAiMjAyMi4xMC4xOCBWYXggSUJEIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazoKICAgIHRoZW1lczogcGFwZXIKICAgIHRvYzogeWVzCiAgICB0b2NfZmxvYXQ6IHllcwplZGl0b3Jfb3B0aW9uczoKICBjaHVua19vdXRwdXRfdHlwZTogaW5saW5lCmRhdGU6ICcyMDIyLTEwLTE4JwotLS0KCiMgTG9hZCBQYWNrYWdlcyAKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KGNvZGVib29rcikKbGlicmFyeShzdW1tYXJ5dG9vbHMpCmxpYnJhcnkoYnJvb20pCmxpYnJhcnkocGVyZm9ybWFuY2UpCmxpYnJhcnkoZ3QpCmxpYnJhcnkoZ3RzdW1tYXJ5KQpsaWJyYXJ5KGphbml0b3IpCmxpYnJhcnkoZm9yY2F0cykKbGlicmFyeShoZXJlKQpsaWJyYXJ5KHlhbWwpCmBgYAoKIyBJbXBvcnQgRGF0YSAKYGBge3J9CnZheF9kZWlkIDwtIHJlYWRfY3N2KCJ+L0Rlc2t0b3AvUi1Db2RlL1NET0hfVmF4L2liZF92YXguY3N2Iiwgc2hvd19jb2xfdHlwZXMgPSBGQUxTRSkKCmFnZXMgPC0gcmVhZF9jc3YoIn4vRGVza3RvcC9SLUNvZGUvU0RPSF9WYXgvc2JqX2lkX2FnZV95ZWFycy5jc3YiLCBzaG93X2NvbF90eXBlcyA9IEZBTFNFKQoKdmF4X2RlaWRfYWdlIDwtIGxlZnRfam9pbih2YXhfZGVpZCwgYWdlcykKCmBgYAoKIyBEYXRhIENsZWFuaW5nIHsudGFic2V0fQoKIyMgUlBMX1RIRU1FUyBFcnJvbmVvdXMgdmFsdWVzIApgYGB7cn0KdmF4X2RlaWRfYWdlICU+JQogIHNlbGVjdChhZ2VfeXJzLCBQQVRJRU5UX0dFTkRFUl9DRCwgUEFUSUVOVF9SQUNFX0RFU0MsIFBBVElFTlRfRVRITklDX0dST1VQX0RFU0MsIFBBVElFTlRfTEFOR1VBR0VfREVTQywgUEFUSUVOVF9SRUxJR0lPTl9ERVNDLCBQQVRJRU5UX01BUklUQUxfU1RBVFVTX0RFU0MsIFNUQVRFLCBBUkVBX1NRTUksIEVfVE9UUE9QLCBSUExfVEhFTUVTLCBSUExfVEhFTUUxLCBSUExfVEhFTUUyLCBSUExfVEhFTUUzLCBSUExfVEhFTUU0LCBGX1RIRU1FMSwgRl9USEVNRTIsIEZfVEhFTUUzLCBGX1RIRU1FNCwgRl9UT1RBTCwgcl9wY3QsIGZsdV8yMDE1LCBmbHVfMjAxNiwgZmx1XzIwMTcsIGZsdV8yMDE4LCBmbHVfMjAxOSwgZmx1XzIwMjAsIGZsdV8yMDIxLCBmbHVfMjAyMiwgdG90YWxfZmx1LCBwcmV2bmFyLCBwdmF4LCBhbnlfcG5ldW0sIGJvdGhfcG5ldW0sIHRvdGFsX2Nvdl92YXgsIHRvdGFsX3NoaW5ncml4KSAtPiB2YXhkZgp2YXhkZiAlPiUKbXV0YXRlKFJQTF9USEVNRVMgPSBuYV9pZihSUExfVEhFTUVTLCAiLTk5OSIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRVMgPSBuYV9pZihSUExfVEhFTUVTLCAiMCIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRTEgPSBuYV9pZihSUExfVEhFTUUxLCAiLTk5OSIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRTEgPSBuYV9pZihSUExfVEhFTUUxLCAiMCIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRTIgPSBuYV9pZihSUExfVEhFTUUyLCAiLTk5OSIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRTIgPSBuYV9pZihSUExfVEhFTUUyLCAiMCIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRTMgPSBuYV9pZihSUExfVEhFTUUzLCAiLTk5OSIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRTMgPSBuYV9pZihSUExfVEhFTUUzLCAiMCIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRTQgPSBuYV9pZihSUExfVEhFTUU0LCAiLTk5OSIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRTQgPSBuYV9pZihSUExfVEhFTUU0LCAiMCIpKSAlPiUgCm11dGF0ZShGX1RPVEFMID0gbmFfaWYoRl9UT1RBTCwgIi05OTkiKSkgJT4lCm11dGF0ZShGX1RIRU1FMSA9IG5hX2lmKEZfVEhFTUUxLCAiLTk5OSIpKSAlPiUKbXV0YXRlKEZfVEhFTUUyID0gbmFfaWYoRl9USEVNRTIsICItOTk5IikpICU+JQptdXRhdGUoRl9USEVNRTMgPSBuYV9pZihGX1RIRU1FMywgIi05OTkiKSkgJT4lCm11dGF0ZShGX1RIRU1FNCA9IG5hX2lmKEZfVEhFTUU0LCAiLTk5OSIpKSAtPiB2YXhkZlRoZW1lCmBgYAoKCiMjIE1hcml0YWwgc3RhdHVzCmBgYHtyfQp2YXhkZlRoZW1lICU+JSAKbXV0YXRlKG1zdGF0XzUgPSBhc19mYWN0b3IoUEFUSUVOVF9NQVJJVEFMX1NUQVRVU19ERVNDKSwKICAgICAgICAgbXN0YXRfNSA9IGZjdF9yZWNvZGUobXN0YXRfNSwgZGl2X3NlcCA9ICJESVZPUkNFRCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpdl9zZXAgPSAiTEVHQUxMWSBTRVBBUkFURUQiLCB3aWRvdyA9ICJXSURPV0VEIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWFycmllZCA9ICJNQVJSSUVEIiwgdW5tYXJyaWVkID0gIlNJTkdMRSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHVua25vd24gPSAiVU5LTk9XTiIsIHVua25vd24gPSAiT1RIRVIiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICB1bm1hcnJpZWQgPSAiU0lHTklGSUNBTlQgT1RIRVIiKSwKICAgICAgICAgbXN0YXRfNSA9IGZjdF9yZWxldmVsKG1zdGF0XzUsIHJlZiA9ICdtYXJyaWVkJykpIC0+IHZheGRmVGhlbWVNcwpgYGAKCiMjIFJlbGlnaW9uIApgYGB7cn0KdmF4ZGZUaGVtZU1zICU+JSAKICBtdXRhdGUocmVsaWdfYWZmaWwgPSBhc19mYWN0b3IoUEFUSUVOVF9SRUxJR0lPTl9ERVNDKSwKICAgICAgICAgIHJlbGlnX2FmZmlsID0gZmN0X3JlY29kZShyZWxpZ19hZmZpbCwgeWVzID0gIkNBVEhPTElDIiwKICAgICAgICAgICAgICAgICAgICAgIG5vID0gIk5PTkUiLCAKICAgICAgICAgICAgICAgICAgICAgIHllcyA9ICJDSFJJU1RJQU4iLCB5ZXMgPSAiTFVUSEVSQU4iLAogICAgICAgICAgICAgICAgICAgICAgeWVzID0gIlJVU1NJQU4gT1JUSE9ET1giLAogICAgICAgICAgICAgICAgICAgICAgeWVzID0gIlBST1RFU1RBTlQiLCB5ZXMgPSAiQkFQVElTVCIsCiAgICAgICAgICAgICAgICAgICAgICB5ZXMgPSAiTUVUSE9ESVNUIiwgeWVzID0gIlBSRVNCWVRFUklBTiIsCiAgICAgICAgICAgICAgICAgICAgICB5ZXMgPSAiTk9OLURFTk9NSU5BVElPTkFMIiwgeWVzID0gIkpFV0lTSCIsCiAgICAgICAgICAgICAgICAgICAgICB5ZXMgPSAiTVVTTElNIiwgeWVzID0gIk9USEVSIiwKICAgICAgICAgICAgICAgICAgICAgIHllcyA9ICJFUElTQ09QQUxJQU4iLCB5ZXMgPSAiUEVOVEVDT1NUQUwiLAogICAgICAgICAgICAgICAgICAgICAgbm8gPSAiQUdOT1NUSUMiLCBubyA9ICJBVEhFSVNUIiwKICAgICAgICAgICAgICAgICAgICAgIHllcyA9ICJKRUhPVkFIJ1MgV0lUTkVTUyIsIHllcyA9ICJISU5EVSIsCiAgICAgICAgICAgICAgICAgICAgICB5ZXMgPSAiR1JFRUsgT1JUSE9ET1giLCB5ZXMgPSAiQ0hVUkNIIE9GIEpFU1VTIENIUklTVCBPRiBMQVRURVItREFZIFNBSU5UUyIsIHllcyA9ICJCQUhBSSIsIG5vID0gIlNQSVJJVFVBTCIsIHllcyA9ICJDSFVSQ0ggT0YgQ0hSSVNUIiwKICAgICAgICAgeWVzID0gIlNFVkVOVEggREFZIEFEVkVOVElTVCIsIHllcyA9ICJBUE9TVE9MSUMiLCB5ZXMgPSAiQlVEREhJU1QiLCB5ZXMgPSAiTkFaQVJFTkUiLCB5ZXMgPSAiQ09OR1JFR0FUSU9OQUwiLCB5ZXMgPSAiVU5JVEVEIENIVVJDSCBPRiBDSFIiLCB5ZXMgPSAiUkVGT1JNRUQiLCB5ZXMgPSAiUEFHQU4iLCB5ZXMgPSAiSkFJTiIsIHllcyA9ICJBU1NFTUJMWSBPRiBHT0QiLCB5ZXMgPSAiUkVPUkcgQ0hSIE9GIExBVCBEQVkiLCB5ZXMgPSAiUVVBS0VSIiwgeWVzID0gIlVOSVRBUklBTiBVTklWRVJTQUxJU1QiLCB5ZXMgPSAiTUVOTk9OSVRFIiwgeWVzID0gIkZSRUUgTUVUSE9ESVNUIiwgeWVzID0gIk5BVElWRSBBTUVSIFNQSVJJVEwiLCB5ZXMgPSAiV0lDQ0FOIiwgeWVzID0gIk9SVEhPRE9YIiwgeWVzID0gIlNBTFZBVElPTiBBUk1ZIiwgeWVzID0gIkRJU0NJUExFUyBPRiBDSFJJU1QiLCB5ZXMgPSAiQUZSSUNBTiBNRVRIT0RJU1QgRVAiLCB5ZXMgPSAiU0lLSCIsIHllcyA9ICJDSFVSQ0ggT0YgR09EIiwgeWVzID0gIlRBT0lTVCIsIHllcyA9ICJBTkdMSUNBTiIpLApyZWxpZ19hZmZpbCA9IGZjdF9yZWxldmVsKHJlbGlnX2FmZmlsLCByZWYgPSAneWVzJykpICU+JSAKbXV0YXRlKHJlbGlnX2FmZmlsID0gbmFfaWYocmVsaWdfYWZmaWwsICJVTktOT1dOIikpICU+JSAKbXV0YXRlKHJlbGlnX2FmZmlsID0gbmFfaWYocmVsaWdfYWZmaWwsICJQQVRJRU5UIFJFRlVTRUQiKSkgLT4gdmF4ZGZUaGVtZU1zUmVsCmBgYAoKIyMgUmFjZSAKYGBge3J9CnZheGRmVGhlbWVNc1JlbCAlPiUgCm11dGF0ZShyYWNlXzUgPSBhc19mYWN0b3IoUEFUSUVOVF9SQUNFX0RFU0MpLAogICAgICAgICByYWNlXzUgPSBmY3RfcmVjb2RlKHJhY2VfNSwgT3RoZXIgPSAiT1RIRVIiLAogICAgICAgICAgICAgICAgICBPdGhlciA9ICJVTktOT1dOIiwgT3RoZXIgPSAiQ0hPT1NFIE5PVCBUTyBESVNDTE9TRSIsCiAgICAgICAgICAgICAgICAgIE90aGVyID0gIk5BVElWRSBIQVdBSUlBTiBBTkQgT1RIRVIgUEFDSUZJQyBJU0xBTkRFUiIsIAogICAgICAgICAgICAgICAgICBPdGhlciA9ICJNSURETEUgRUFTVEVSTi9OT1JUSCBBRlJJQ0FOIiwKICAgICAgICAgICAgICAgIEFTSUFOID0gIkFTSUFOIElORElBTiIsIEFTSUFOID0gIk9USEVSIEFTSUFOIiwKICAgICAgICAgICAgICAgIEFTSUFOID0gIkpBUEFORVNFIiwgQVNJQU4gPSAiS09SRUFOIiwgQVNJQU4gPSAiRklMSVBJTk8iLAogICAgICAgICAgICAgICAgQVNJQU4gPSAiQ0hJTkVTRSIpLAogICAgICAgICByYWNlXzUgPSBmY3RfcmVsZXZlbChyYWNlXzUsIHJlZiA9ICdXSElURSBPUiBDQVVDQVNJQU4nKSkgLT4gdmF4ZGZUaGVtZU1zUmVsUmEKYGBgCgojIyBHZW5kZXIKYGBge3J9CnZheGRmVGhlbWVNc1JlbFJhICU+JSAKbXV0YXRlKGdlbmRlciA9IGFzX2ZhY3RvcihQQVRJRU5UX0dFTkRFUl9DRCksCiAgICAgICAgIGdlbmRlciA9IGZjdF9yZWNvZGUoZ2VuZGVyLCBtYWxlID0gIk0iLCBmZW1hbGUgPSAiRiIpLAogICAgICAgICBnZW5kZXIgPSBmY3RfcmVsZXZlbChnZW5kZXIsIHJlZiA9ICJtYWxlIikpIC0+IHZheGRmVGhlbWVNc1JlbFJhRwpgYGAKCiMjIExhbmd1YWdlCmBgYHtyfQp2YXhkZlRoZW1lTXNSZWxSYUcgJT4lIAogIG11dGF0ZShsYW5nXzMgPSBhc19mYWN0b3IoUEFUSUVOVF9MQU5HVUFHRV9ERVNDKSwKbGFuZ18zID0gZmN0X3JlY29kZShsYW5nXzMsIEVuZ2xpc2ggPSAiRU5HTElTSCIsCk90aGVyID0gIkFSQUJJQyIsIE90aGVyID0gIkpBUEFORVNFIiwKT3RoZXIgPSAiQ0hJTkVTRSwgTUFOREFSSU4iLApPdGhlciA9ICJLT1JFQU4iLCBPdGhlciA9ICJTSUdOIExBTkdVQUdFIiwKT3RoZXIgPSAiUlVTU0lBTiIsIE90aGVyID0gIlNQQU5JU0giLCBPdGhlciA9ICJBUk1FTklBTiIsCk90aGVyID0gIlRVUktJU0giLCBPdGhlciA9ICJISU5ESSIsIE90aGVyID0gIkJFTkdBTEkiLCBPdGhlciA9ICJGQVJTSTsgUEVSU0lBTiIsIE90aGVyID0gIkFMQkFOSUFOIiwgT3RoZXIgPSAiSE1PTkciLCBPdGhlciA9ICJST01BTklBTiIsIApPdGhlciA9ICJQVU5KQUJJIiwgT3RoZXIgPSAiQ1JPQVRJQU4iLCBPdGhlciA9ICJDSEFMREVBTiIsIApPdGhlciA9ICJCVVJNRVNFIiwgT3RoZXIgPSAiUE9SVFVHVUVTRSIsCk90aGVyID0gIlRBR0FMT0ciLCBPdGhlciA9ICJGUkVOQ0giLApPdGhlciA9ICJHRVJNQU4iLCBPdGhlciA9ICJDSElORVNFLCBDQU5UT05FU0UiLApPdGhlciA9ICJCT1NOSUFOIiwgT3RoZXIgPSAiVVJEVSIsCk90aGVyID0gIlVOS05PV04iKSwKbGFuZ18zID0gZmN0X3JlbGV2ZWwobGFuZ18zLCByZWYgPSAnRW5nbGlzaCcpKSAtPiB2YXhkZlRoZW1lTXNSZWxSYUdMCmBgYAoKIyMgRXRobmljaXR5CmBgYHtyfQp2YXhkZlRoZW1lTXNSZWxSYUdMICU+JSAKICBtdXRhdGUoZXRobmljXzMgPSBhc19mYWN0b3IoUEFUSUVOVF9FVEhOSUNfR1JPVVBfREVTQykpICU+JSAKIG11dGF0ZShldGhuaWNfMyA9IG5hX2lmKGV0aG5pY18zLCAiVU5LTk9XTiIpKSAlPiUgCm11dGF0ZShldGhuaWNfMyA9IG5hX2lmKGV0aG5pY18zLCAiQ0hPT1NFIE5PVCBUTyBESVNDTE9TRSIpKSAtPiB2YXhkZlRoZW1lTXNSZWxSYUdMRXRoCmBgYAoKIyMgUG9wdWxhdGlvbiBkZW5zaXR5CmBgYHtyfQp2YXhkZlRoZW1lTXNSZWxSYUdMRXRoICU+JSAKICBtdXRhdGUocG9wX2RlbnM9RV9UT1RQT1AvQVJFQV9TUU1JKSAtPiB2YXhkZlRoZW1lTXNSZWxSYUdMRXRoUG9wCmBgYAoKCiMgQ29kZWJvb2sgCmBgYHtyfQp2YXhkZlRoZW1lTXNSZWxSYUdMRXRoUG9wICU+JSAKc2VsZWN0KGFnZV95cnMsIGdlbmRlciwgcmFjZV81LCBldGhuaWNfMywgbGFuZ18zLCByZWxpZ19hZmZpbCwgbXN0YXRfNSwgU1RBVEUsQVJFQV9TUU1JLCBFX1RPVFBPUCwgcG9wX2RlbnMsIFJQTF9USEVNRVMsIFJQTF9USEVNRTEsIFJQTF9USEVNRTIsIFJQTF9USEVNRTMsIFJQTF9USEVNRTQsIEZfVE9UQUwsIEZfVEhFTUUxLCBGX1RIRU1FMiwgRl9USEVNRTMsIEZfVEhFTUU0LCByX3BjdCwgZmx1XzIwMTUsIGZsdV8yMDE2LCBmbHVfMjAxNywgZmx1XzIwMTgsIGZsdV8yMDE5LCBmbHVfMjAyMCwgZmx1XzIwMjEsIGZsdV8yMDIyLCB0b3RhbF9mbHUsIHByZXZuYXIsIHB2YXgsIGFueV9wbmV1bSwgYW55X3BuZXVtLCB0b3RhbF9jb3ZfdmF4LCB0b3RhbF9zaGluZ3JpeCkgLT4gdmF4X2NsZWFuMQpwcmludChkZlN1bW1hcnkodmF4X2NsZWFuMSksIG1ldGhvZCA9ICdyZW5kZXInKQpgYGAKIyBQYXRpZW50IENoYXJhY3RlcmlzdGljcyB7LnRhYnNldH0KCiMjIEJhc2VsaW5lIENoYXJhY3RlcmlzdGljcyAKYGBge3J9CnZheF9jbGVhbjEgJT4lIAogIHNlbGVjdChhZ2VfeXJzLCBnZW5kZXIsIHJhY2VfNSwgZXRobmljXzMsIGxhbmdfMywgcmVsaWdfYWZmaWwsIG1zdGF0XzUsIHBvcF9kZW5zLCBSUExfVEhFTUVTLCBSUExfVEhFTUUxLCBSUExfVEhFTUUyLCBSUExfVEhFTUUzLCBSUExfVEhFTUU0LCBmbHVfMjAyMSwgdG90YWxfZmx1LCBhbnlfcG5ldW0sIHRvdGFsX2Nvdl92YXgsIHRvdGFsX3NoaW5ncml4KSAtPiBiYXNlbGluZQpiYXNlbGluZSAlPiUgdGJsX3N1bW1hcnkobGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgUlBMX1RIRU1FNCB+ICJIb3VzaW5nIGFuZCBUcmFuc3BvcnRhdGlvbiIsIHBvcF9kZW5zIH4gIlBvcHVsYXRpb24gRGVuc2l0eSIpLAogICAgICAgIHN0YXRpc3RpYyA9IGxpc3QoYWxsX2NvbnRpbnVvdXMoKSB+ICJ7bWVhbn0gKHtzZH0pIiksCiAgICAgICAgbWlzc2luZ190ZXh0ID0gIihNaXNzaW5nKSIpCmBgYAoKIyMgQmFzZWxpbmUgY2hhcmFjdGVyaXN0aWNzIGJ5IEZsdSAyMDIxIApgYGB7cn0KYmFzZWxpbmUgJT4lIHRibF9zdW1tYXJ5KGJ5ID0gZmx1XzIwMjEsCiAgICAgICAgIGxhYmVsID0gbGlzdChhZ2VfeXJzIH4gIkFnZSIsIGdlbmRlcn4gIkdlbmRlciIsIHJhY2VfNSB+ICJSYWNlIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIkVuZ2xpc2ggU3BlYWtpbmciLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIFJQTF9USEVNRVMgfiAiVG90YWwgU1ZJIiwgUlBMX1RIRU1FMSB+ICJTb2NlaW9lY29ub21pYyBTdGF0dXMiLCBSUExfVEhFTUUyIH4gIkhvdXNlaG9sZCBDb21wb3NpdGlvbiIsIFJQTF9USEVNRTMgfiAiTWlub3JpdHkgU3RhdHVzIGFuZCBMYW5ndWFnZSIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iLCBwb3BfZGVucyB+ICJQb3B1bGF0aW9uIERlbnNpdHkiKSwKICAgICAgICBzdGF0aXN0aWMgPSBsaXN0KGFsbF9jb250aW51b3VzKCkgfiAie21lYW59ICh7c2R9KSIpLAogICAgICAgIG1pc3NpbmdfdGV4dCA9ICIoTWlzc2luZykiKSAlPiUgYWRkX3AoKQpgYGAKCiMjIEJhc2VsaW5lIGNoYXJhY3RlcmlzdGljcyBieSBwbmV1bW9uaWEgCmBgYHtyfQpiYXNlbGluZSAlPiUgdGJsX3N1bW1hcnkoYnkgPSBhbnlfcG5ldW0sCiAgICAgICAgIGxhYmVsID0gbGlzdChhZ2VfeXJzIH4gIkFnZSIsIGdlbmRlcn4gIkdlbmRlciIsIHJhY2VfNSB+ICJSYWNlIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIkVuZ2xpc2ggU3BlYWtpbmciLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIFJQTF9USEVNRVMgfiAiVG90YWwgU1ZJIiwgUlBMX1RIRU1FMSB+ICJTb2NlaW9lY29ub21pYyBTdGF0dXMiLCBSUExfVEhFTUUyIH4gIkhvdXNlaG9sZCBDb21wb3NpdGlvbiIsIFJQTF9USEVNRTMgfiAiTWlub3JpdHkgU3RhdHVzIGFuZCBMYW5ndWFnZSIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iLCBwb3BfZGVucyB+ICJQb3B1bGF0aW9uIERlbnNpdHkiKSwKICAgICAgICBzdGF0aXN0aWMgPSBsaXN0KGFsbF9jb250aW51b3VzKCkgfiAie21lYW59ICh7c2R9KSIpLAogICAgICAgIG1pc3NpbmdfdGV4dCA9ICIoTWlzc2luZykiKSAlPiUgYWRkX3AoKQpgYGAKCiMjIEJhc2VsaW5lIGNoYXJhY3RlcmlzdGljcyBieSBTaGluZ3JpeCAKYGBge3J9CmJhc2VsaW5lICU+JSB0Ymxfc3VtbWFyeShieSA9IHRvdGFsX3NoaW5ncml4LAogICAgICAgICBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBnZW5kZXJ+ICJHZW5kZXIiLCByYWNlXzUgfiAiUmFjZSIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJFbmdsaXNoIFNwZWFraW5nIiwgcmVsaWdfYWZmaWwgfiAiQW55IFJlbGlnaW91cyBBZmZpbGlhdGlvbiIsIG1zdGF0XzUgfiAiTWFyaXRhbCBTdGF0dXMiLCBSUExfVEhFTUVTIH4gIlRvdGFsIFNWSSIsIFJQTF9USEVNRTEgfiAiU29jZWlvZWNvbm9taWMgU3RhdHVzIiwgUlBMX1RIRU1FMiB+ICJIb3VzZWhvbGQgQ29tcG9zaXRpb24iLCBSUExfVEhFTUUzIH4gIk1pbm9yaXR5IFN0YXR1cyBhbmQgTGFuZ3VhZ2UiLCBSUExfVEhFTUU0IH4gIkhvdXNpbmcgYW5kIFRyYW5zcG9ydGF0aW9uIiwgcG9wX2RlbnMgfiAiUG9wdWxhdGlvbiBEZW5zaXR5IiksCiAgICAgICAgc3RhdGlzdGljID0gbGlzdChhbGxfY29udGludW91cygpIH4gInttZWFufSAoe3NkfSkiKSwKICAgICAgICBtaXNzaW5nX3RleHQgPSAiKE1pc3NpbmcpIikgJT4lIGFkZF9wKCkKYGBgCgojIyBCYXNlbGluZSBDaGFyYWN0ZXJpc3RpY3MgYnkgVG90YWxfQ09WSUQgCmBgYHtyfQpiYXNlbGluZSAlPiUgdGJsX3N1bW1hcnkoYnkgPSB0b3RhbF9jb3ZfdmF4LAogICAgICAgICBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBnZW5kZXJ+ICJHZW5kZXIiLCByYWNlXzUgfiAiUmFjZSIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJFbmdsaXNoIFNwZWFraW5nIiwgcmVsaWdfYWZmaWwgfiAiQW55IFJlbGlnaW91cyBBZmZpbGlhdGlvbiIsIG1zdGF0XzUgfiAiTWFyaXRhbCBTdGF0dXMiLCBSUExfVEhFTUVTIH4gIlRvdGFsIFNWSSIsIFJQTF9USEVNRTEgfiAiU29jZWlvZWNvbm9taWMgU3RhdHVzIiwgUlBMX1RIRU1FMiB+ICJIb3VzZWhvbGQgQ29tcG9zaXRpb24iLCBSUExfVEhFTUUzIH4gIk1pbm9yaXR5IFN0YXR1cyBhbmQgTGFuZ3VhZ2UiLCBSUExfVEhFTUU0IH4gIkhvdXNpbmcgYW5kIFRyYW5zcG9ydGF0aW9uIiwgcG9wX2RlbnMgfiAiUG9wdWxhdGlvbiBEZW5zaXR5IiksCiAgICAgICAgc3RhdGlzdGljID0gbGlzdChhbGxfY29udGludW91cygpIH4gInttZWFufSAoe3NkfSkiKSwKICAgICAgICBtaXNzaW5nX3RleHQgPSAiKE1pc3NpbmcpIikgJT4lIGFkZF9wKCkKYGBgCgoKIyBFc3RpbWF0ZSB2YXgvbm8gdmF4IGJ5IGRlbW9nCmBgYHtyfQp2YXhfY2xlYW4xICU+JSAKICB0YWJ5bChtc3RhdF81LCB0b3RhbF9jb3ZfdmF4KSAlPiUgCiAgYWRvcm5fdG90YWxzKGMoInJvdyIsICJjb2wiKSkgJT4lCiAgYWRvcm5fcGVyY2VudGFnZXMoInJvdyIpICU+JSAKICBhZG9ybl9wY3RfZm9ybWF0dGluZyhyb3VuZGluZyA9ICJoYWxmIHVwIiwgZGlnaXRzID0gMCkgJT4lCiAgYWRvcm5fbnMoKSAlPiUKICBhZG9ybl90aXRsZSgiY29tYmluZWQiKSAlPiUgCiAgZ3QoKQogIAoKdmF4X2NsZWFuMSAlPiUgCiAgdGFieWwoZXRobmljXzMsIHRvdGFsX2Nvdl92YXgpICU+JSAKICBhZG9ybl90b3RhbHMoYygicm93IiwgImNvbCIpKSAlPiUKICBhZG9ybl9wZXJjZW50YWdlcygicm93IikgJT4lIAogIGFkb3JuX3BjdF9mb3JtYXR0aW5nKHJvdW5kaW5nID0gImhhbGYgdXAiLCBkaWdpdHMgPSAwKSAlPiUKICBhZG9ybl9ucygpICU+JQogIGFkb3JuX3RpdGxlKCJjb21iaW5lZCIpICU+JSAKICBndCgpCiAgCgp2YXhfY2xlYW4xICU+JSAKICB0YWJ5bChyYWNlXzUsIHRvdGFsX2Nvdl92YXgpICU+JSAKICBhZG9ybl90b3RhbHMoYygicm93IiwgImNvbCIpKSAlPiUKICBhZG9ybl9wZXJjZW50YWdlcygicm93IikgJT4lIAogIGFkb3JuX3BjdF9mb3JtYXR0aW5nKHJvdW5kaW5nID0gImhhbGYgdXAiLCBkaWdpdHMgPSAwKSAlPiUKICBhZG9ybl9ucygpICU+JQogIGFkb3JuX3RpdGxlKCJjb21iaW5lZCIpICU+JSAKICBndCgpCgpgYGAKCiMgUHJlbGltIFZheCBNb2RlbHMgey50YWJzZXR9CgojIyBNb2RlbCAxOiBGbHUgMjAyMSArIFJQTF9USEVNRVMgCmBgYHtyfQpGbHUyMDIxX1NWSSA8LSBnbG0oZmx1XzIwMjEgfiBhZ2VfeXJzICsgbXN0YXRfNSArIHJhY2VfNSArIGxhbmdfMyArIHJlbGlnX2FmZmlsCiAgICAgICAgICAgICAgICsgZ2VuZGVyICsgZXRobmljXzMgKyBwb3BfZGVucyArIHJfcGN0ICsgUlBMX1RIRU1FUywKICAgICAgICAgICAgICBmYW1pbHkgPSAiYmlub21pYWwiLAogICAgICAgICAgICAgIGRhdGEgPSB2YXhfY2xlYW4xKQpzdW1tYXJ5KEZsdTIwMjFfU1ZJICkKYnJvb206OmdsYW5jZShGbHUyMDIxX1NWSSApCmJyb29tOjp0aWR5KEZsdTIwMjFfU1ZJICwgZXhwb25lbnRpYXRlID0gVFJVRSkKbW9kZWxfcGVyZm9ybWFuY2UoRmx1MjAyMV9TVkkgKQp0YmxfcmVncmVzc2lvbihGbHUyMDIxX1NWSSwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBSUExfVEhFTUVTIH4gIlRvdGFsIFNWSSIsIG1zdGF0XzUgfiAiTWFyaXRhbCBTdGF0dXMiLCBwb3BfZGVucyB+ICJQb3B1bGF0aW9uIERlbnNpdHkiKSwgZXhwb25lbnRpYXRlID0gVFJVRSkKYGBgCgojIyBNb2RlbCAyOiBGbHVfMjAyMSArIFJQTF9USEVNRVN4NApgYGB7cn0KRmx1MjAyMV80IDwtIGdsbShmbHVfMjAyMSB+ICBhZ2VfeXJzICsgcmFjZV81ICsgbXN0YXRfNSArIGxhbmdfMyArIHJlbGlnX2FmZmlsIAogICAgICAgKyBnZW5kZXIgKyBldGhuaWNfMyArIHBvcF9kZW5zICsgcl9wY3QgKyBSUExfVEhFTUUxICsgUlBMX1RIRU1FMiArIFJQTF9USEVNRTMgKyBSUExfVEhFTUU0LAogICAgICAgICAgICAgIGZhbWlseSA9ICJiaW5vbWlhbCIsCiAgICAgICAgICAgICAgZGF0YSA9IHZheF9jbGVhbjEpCnN1bW1hcnkoRmx1MjAyMV80KQpicm9vbTo6Z2xhbmNlKEZsdTIwMjFfNCkKYnJvb206OnRpZHkoRmx1MjAyMV80LCBleHBvbmVudGlhdGUgPSBUUlVFKQptb2RlbF9wZXJmb3JtYW5jZShGbHUyMDIxXzQpCnRibF9yZWdyZXNzaW9uKEZsdTIwMjFfNCwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgcmFjZV81IH4gIlJhY2UiLCBnZW5kZXJ+ICJHZW5kZXIiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iLCBwb3BfZGVucyB+ICJQb3B1bGF0aW9uIERlbnNpdHkiKSwgZXhwb25lbnRpYXRlID0gVFJVRSkKYGBgCgojIyBNb2RlbCAzOiBUb3RhbCBGbHUgKyBSUExfVEhFTUVTCmBgYHtyfQp0b3RhbGZsdV9TVkkgPC0gbG0odG90YWxfZmx1IH4gYWdlX3lycyArIG1zdGF0XzUgKyByYWNlXzUgKyBsYW5nXzMgKyByZWxpZ19hZmZpbAogICAgICAgICAgICAgICArIGdlbmRlciArIGV0aG5pY18zICsgcG9wX2RlbnMgKyByX3BjdCArIFJQTF9USEVNRVMsIGRhdGEgPSB2YXhfY2xlYW4xKSAKc3VtbWFyeSh0b3RhbGZsdV9TVkkpCmJyb29tOjpnbGFuY2UodG90YWxmbHVfU1ZJKQpicm9vbTo6dGlkeSh0b3RhbGZsdV9TVkksIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKHRvdGFsZmx1X1NWSSkKdGJsX3JlZ3Jlc3Npb24odG90YWxmbHVfU1ZJLCBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBwb3BfZGVucyB+ICJQb3B1bGF0aW9uIGRlbnNpdHkiLCBnZW5kZXJ+ICJHZW5kZXIiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBSUExfVEhFTUVTIH4gIlRvdGFsIFNWSSIsIG1zdGF0XzUgfiAiTWFyaXRhbCBTdGF0dXMiKSkKYGBgCgojIyBNb2RlbCA0OiBUb3RhbCBGbHUgKyBSUExfVEhFTUVTeDQKYGBge3J9CnRvdGFsZmx1XzQgPC0gbG0odG90YWxfZmx1IH4gYWdlX3lycyArIG1zdGF0XzUgKyByYWNlXzUgKyBsYW5nXzMgKyByZWxpZ19hZmZpbAogICAgICAgICAgICAgICArIGdlbmRlciArIGV0aG5pY18zICsgcG9wX2RlbnMgKyByX3BjdCArIFJQTF9USEVNRTEgKyBSUExfVEhFTUUyICsgUlBMX1RIRU1FMyArIFJQTF9USEVNRTQsIGRhdGEgPSB2YXhfY2xlYW4xKSAKc3VtbWFyeSh0b3RhbGZsdV80KQpicm9vbTo6Z2xhbmNlKHRvdGFsZmx1XzQpCmJyb29tOjp0aWR5KHRvdGFsZmx1XzQsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKHRvdGFsZmx1XzQpCnRibF9yZWdyZXNzaW9uKHRvdGFsZmx1XzQsIGxhYmVsID0gbGlzdChhZ2VfeXJzIH4gIkFnZSIsIHBvcF9kZW5zIH4gIlBvcHVsYXRpb24gZGVuc2l0eSIsIGdlbmRlcn4gIkdlbmRlciIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJFbmdsaXNoIFNwZWFraW5nIiwgcmVsaWdfYWZmaWwgfiAiQW55IFJlbGlnaW91cyBBZmZpbGlhdGlvbiIsIFJQTF9USEVNRTEgfiAiU29jZWlvZWNvbm9taWMgU3RhdHVzIiwgUlBMX1RIRU1FMiB+ICJIb3VzZWhvbGQgQ29tcG9zaXRpb24iLCBSUExfVEhFTUUzIH4gIk1pbm9yaXR5IFN0YXR1cyBhbmQgTGFuZ3VhZ2UiLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgUlBMX1RIRU1FNCB+ICJIb3VzaW5nIGFuZCBUcmFuc3BvcnRhdGlvbiIsIG1zdGF0XzUgfiAiTWFyaXRhbCBTdGF0dXMiKSkKYGBgCgoKIyMgTW9kZWwgNTogVG90YWwgQ09WSUQgKyBSUExfVEhFTUVTCmBgYHtyfQp0b3RhbGNvdl9TVkkgPC0gbG0odG90YWxfY292X3ZheCB+IGFnZV95cnMgKyBtc3RhdF81ICsgcmFjZV81ICsgbGFuZ18zICsgcmVsaWdfYWZmaWwKICAgICAgICAgICAgICAgKyBnZW5kZXIgKyBldGhuaWNfMyArIHBvcF9kZW5zICsgcl9wY3QgKyBSUExfVEhFTUVTLCBkYXRhID0gdmF4X2NsZWFuMSkgCnN1bW1hcnkodG90YWxjb3ZfU1ZJKQpicm9vbTo6Z2xhbmNlKHRvdGFsY292X1NWSSkKYnJvb206OnRpZHkodG90YWxjb3ZfU1ZJLCBleHBvbmVudGlhdGUgPSBUUlVFKQptb2RlbF9wZXJmb3JtYW5jZSh0b3RhbGNvdl9TVkkpCnRibF9yZWdyZXNzaW9uKHRvdGFsY292X1NWSSwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgcG9wX2RlbnMgfiAiUG9wdWxhdGlvbiBkZW5zaXR5IiwgZ2VuZGVyfiAiR2VuZGVyIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIkVuZ2xpc2ggU3BlYWtpbmciLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIikpCmBgYAoKIyMgTW9kZWwgNjogVG90YWwgQ09WSUQgKyBSUExfVEhFTUVTeDQKYGBge3J9CnRvdGFsY292XzQgPC0gbG0odG90YWxfY292X3ZheCB+IGFnZV95cnMgKyBtc3RhdF81ICsgcmFjZV81ICsgbGFuZ18zICsgcmVsaWdfYWZmaWwKICAgICAgICAgICAgICAgKyBnZW5kZXIgKyBldGhuaWNfMyArIHBvcF9kZW5zICsgcl9wY3QgKyBSUExfVEhFTUUxICsgUlBMX1RIRU1FMiArIFJQTF9USEVNRTMgKyBSUExfVEhFTUU0LCBkYXRhID0gdmF4X2NsZWFuMSkgCnN1bW1hcnkodG90YWxjb3ZfNCkKYnJvb206OmdsYW5jZSh0b3RhbGNvdl80KQpicm9vbTo6dGlkeSh0b3RhbGNvdl80LCBleHBvbmVudGlhdGUgPSBUUlVFKQptb2RlbF9wZXJmb3JtYW5jZSh0b3RhbGNvdl80KQp0YmxfcmVncmVzc2lvbih0b3RhbGNvdl80LCBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBwb3BfZGVucyB+ICJQb3B1bGF0aW9uIGRlbnNpdHkiLCBnZW5kZXJ+ICJHZW5kZXIiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIikpCmBgYAoKIyMgTW9kZWwgNzogQW55IHBuZXVtICsgUlBMX1RIRU1FUwpgYGB7cn0KYW55X3BuZXVtX1NWSSA8LSBsbShhbnlfcG5ldW0gfiBhZ2VfeXJzICsgbXN0YXRfNSArIHJhY2VfNSArIGxhbmdfMyArIHJlbGlnX2FmZmlsCiAgICAgICAgICAgICAgICsgZ2VuZGVyICsgZXRobmljXzMgKyBwb3BfZGVucyArIHJfcGN0ICsgUlBMX1RIRU1FUywgZGF0YSA9IHZheF9jbGVhbjEpIApzdW1tYXJ5KGFueV9wbmV1bV9TVkkpCmJyb29tOjpnbGFuY2UoYW55X3BuZXVtX1NWSSkKYnJvb206OnRpZHkoYW55X3BuZXVtX1NWSSwgZXhwb25lbnRpYXRlID0gVFJVRSkKbW9kZWxfcGVyZm9ybWFuY2UoYW55X3BuZXVtX1NWSSkKdGJsX3JlZ3Jlc3Npb24oYW55X3BuZXVtX1NWSSwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgcG9wX2RlbnMgfiAiUG9wdWxhdGlvbiBkZW5zaXR5IiwgZ2VuZGVyfiAiR2VuZGVyIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIkVuZ2xpc2ggU3BlYWtpbmciLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIikpCmBgYAoKIyMgTW9kZWwgODogQW55IHBuZXVtbyArIFJQTF9USEVNRVN4NApgYGB7cn0KYW55X3BuZXVtXzQgPC0gbG0oYW55X3BuZXVtIH4gYWdlX3lycyArIG1zdGF0XzUgKyByYWNlXzUgKyBsYW5nXzMgKyByZWxpZ19hZmZpbAogICAgICAgICAgICAgICArIGdlbmRlciArIGV0aG5pY18zICsgcG9wX2RlbnMgKyByX3BjdCArIFJQTF9USEVNRTEgKyBSUExfVEhFTUUyICsgUlBMX1RIRU1FMyArIFJQTF9USEVNRTQsIGRhdGEgPSB2YXhfY2xlYW4xKSAKc3VtbWFyeShhbnlfcG5ldW1fNCkKYnJvb206OmdsYW5jZShhbnlfcG5ldW1fNCkKYnJvb206OnRpZHkoYW55X3BuZXVtXzQsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKGFueV9wbmV1bV80KQp0YmxfcmVncmVzc2lvbihhbnlfcG5ldW1fNCwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgcG9wX2RlbnMgfiAiUG9wdWxhdGlvbiBkZW5zaXR5IiwgZ2VuZGVyfiAiR2VuZGVyIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIkVuZ2xpc2ggU3BlYWtpbmciLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgUlBMX1RIRU1FMSB+ICJTb2NlaW9lY29ub21pYyBTdGF0dXMiLCBSUExfVEhFTUUyIH4gIkhvdXNlaG9sZCBDb21wb3NpdGlvbiIsIFJQTF9USEVNRTMgfiAiTWlub3JpdHkgU3RhdHVzIGFuZCBMYW5ndWFnZSIsIG1zdGF0XzUgfiAiTWFyaXRhbCBTdGF0dXMiLCBSUExfVEhFTUU0IH4gIkhvdXNpbmcgYW5kIFRyYW5zcG9ydGF0aW9uIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIpKQpgYGAKCiMjIE1vZGVsIDk6IFNoaW5ncml4ICsgUlBMX1RIRU1FUwpgYGB7cn0KdmF4X2NsZWFuMSAlPiUgCm11dGF0ZShhZ2VfMiA9IGNhc2Vfd2hlbigKYWdlX3lyczw0OS45OSB+IDAsClRSVUUgfiAxKSkgLT4gdmF4X2NsZWFuMgpTaGluZ3JpeF9TVkkgPC0gbG0odG90YWxfc2hpbmdyaXggfiBhZ2VfMiArIG1zdGF0XzUgKyByYWNlXzUgKyBsYW5nXzMgKyByZWxpZ19hZmZpbAogICAgICAgICAgICAgICArIGdlbmRlciArIGV0aG5pY18zICsgcG9wX2RlbnMgKyByX3BjdCArIFJQTF9USEVNRVMsIGRhdGEgPSB2YXhfY2xlYW4yKSAKc3VtbWFyeShTaGluZ3JpeF9TVkkpCmJyb29tOjpnbGFuY2UoU2hpbmdyaXhfU1ZJKQpicm9vbTo6dGlkeShTaGluZ3JpeF9TVkksIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKFNoaW5ncml4X1NWSSkKdGJsX3JlZ3Jlc3Npb24oU2hpbmdyaXhfU1ZJLCBsYWJlbCA9IGxpc3QoYWdlXzIgfiAiQWdlID4gNTAiLCBwb3BfZGVucyB+ICJQb3B1bGF0aW9uIGRlbnNpdHkiLCBnZW5kZXJ+ICJHZW5kZXIiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBSUExfVEhFTUVTIH4gIlRvdGFsIFNWSSIsIG1zdGF0XzUgfiAiTWFyaXRhbCBTdGF0dXMiKSkKYGBgCgojIyBNb2RlbCAxMDogU2hpbmdyaXggKyBSUExfVEhFTUVTeDQgCmBgYHtyfQp0b3RhbF9zaGluZ3JpeF80IDwtIGxtKHRvdGFsX3NoaW5ncml4IH4gYWdlXzIgKyBtc3RhdF81ICsgcmFjZV81ICsgbGFuZ18zICsgcmVsaWdfYWZmaWwKICAgICAgICAgICAgICAgKyBnZW5kZXIgKyBldGhuaWNfMyArIHBvcF9kZW5zICsgcl9wY3QgKyBSUExfVEhFTUUxICsgUlBMX1RIRU1FMiArIFJQTF9USEVNRTMgKyBSUExfVEhFTUU0LCBkYXRhID0gdmF4X2NsZWFuMikgCnN1bW1hcnkodG90YWxfc2hpbmdyaXhfNCkKYnJvb206OmdsYW5jZSh0b3RhbF9zaGluZ3JpeF80KQpicm9vbTo6dGlkeSh0b3RhbF9zaGluZ3JpeF80LCBleHBvbmVudGlhdGUgPSBUUlVFKQptb2RlbF9wZXJmb3JtYW5jZSh0b3RhbF9zaGluZ3JpeF80KQp0YmxfcmVncmVzc2lvbih0b3RhbF9zaGluZ3JpeF80LCBsYWJlbCA9IGxpc3QoYWdlXzIgfiAiQWdlID4gNTAiLCBwb3BfZGVucyB+ICJQb3B1bGF0aW9uIGRlbnNpdHkiLCBnZW5kZXJ+ICJHZW5kZXIiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIikpCmBgYAoKCgoKYGBgCg==