Data Cleaning
RPL_THEMES Erroneous values
vax_deid_age %>%
select(age_yrs, PATIENT_GENDER_CD, PATIENT_RACE_DESC, PATIENT_ETHNIC_GROUP_DESC, PATIENT_LANGUAGE_DESC, PATIENT_RELIGION_DESC, PATIENT_MARITAL_STATUS_DESC, STATE, AREA_SQMI, E_TOTPOP, RPL_THEMES, RPL_THEME1, RPL_THEME2, RPL_THEME3, RPL_THEME4, F_THEME1, F_THEME2, F_THEME3, F_THEME4, F_TOTAL, r_pct, flu_2015, flu_2016, flu_2017, flu_2018, flu_2019, flu_2020, flu_2021, flu_2022, total_flu, prevnar, pvax, any_pneum, both_pneum, total_cov_vax, total_shingrix) -> vaxdf
vaxdf %>%
mutate(RPL_THEMES = na_if(RPL_THEMES, "-999")) %>%
mutate(RPL_THEMES = na_if(RPL_THEMES, "0")) %>%
mutate(RPL_THEME1 = na_if(RPL_THEME1, "-999")) %>%
mutate(RPL_THEME1 = na_if(RPL_THEME1, "0")) %>%
mutate(RPL_THEME2 = na_if(RPL_THEME2, "-999")) %>%
mutate(RPL_THEME2 = na_if(RPL_THEME2, "0")) %>%
mutate(RPL_THEME3 = na_if(RPL_THEME3, "-999")) %>%
mutate(RPL_THEME3 = na_if(RPL_THEME3, "0")) %>%
mutate(RPL_THEME4 = na_if(RPL_THEME4, "-999")) %>%
mutate(RPL_THEME4 = na_if(RPL_THEME4, "0")) %>%
mutate(F_TOTAL = na_if(F_TOTAL, "-999")) %>%
mutate(F_THEME1 = na_if(F_THEME1, "-999")) %>%
mutate(F_THEME2 = na_if(F_THEME2, "-999")) %>%
mutate(F_THEME3 = na_if(F_THEME3, "-999")) %>%
mutate(F_THEME4 = na_if(F_THEME4, "-999")) -> vaxdfTheme
Marital status
vaxdfTheme %>%
mutate(mstat_5 = as_factor(PATIENT_MARITAL_STATUS_DESC),
mstat_5 = fct_recode(mstat_5, div_sep = "DIVORCED",
div_sep = "LEGALLY SEPARATED", widow = "WIDOWED",
married = "MARRIED", unmarried = "SINGLE",
unknown = "UNKNOWN", unknown = "OTHER",
unmarried = "SIGNIFICANT OTHER"),
mstat_5 = fct_relevel(mstat_5, ref = 'married')) -> vaxdfThemeMs
Religion
vaxdfThemeMs %>%
mutate(relig_affil = as_factor(PATIENT_RELIGION_DESC),
relig_affil = fct_recode(relig_affil, yes = "CATHOLIC",
no = "NONE",
yes = "CHRISTIAN", yes = "LUTHERAN",
yes = "RUSSIAN ORTHODOX",
yes = "PROTESTANT", yes = "BAPTIST",
yes = "METHODIST", yes = "PRESBYTERIAN",
yes = "NON-DENOMINATIONAL", yes = "JEWISH",
yes = "MUSLIM", yes = "OTHER",
yes = "EPISCOPALIAN", yes = "PENTECOSTAL",
no = "AGNOSTIC", no = "ATHEIST",
yes = "JEHOVAH'S WITNESS", yes = "HINDU",
yes = "GREEK ORTHODOX", yes = "CHURCH OF JESUS CHRIST OF LATTER-DAY SAINTS", yes = "BAHAI", no = "SPIRITUAL", yes = "CHURCH OF CHRIST",
yes = "SEVENTH DAY ADVENTIST", yes = "APOSTOLIC", yes = "BUDDHIST", yes = "NAZARENE", yes = "CONGREGATIONAL", yes = "UNITED CHURCH OF CHR", yes = "REFORMED", yes = "PAGAN", yes = "JAIN", yes = "ASSEMBLY OF GOD", yes = "REORG CHR OF LAT DAY", yes = "QUAKER", yes = "UNITARIAN UNIVERSALIST", yes = "MENNONITE", yes = "FREE METHODIST", yes = "NATIVE AMER SPIRITL", yes = "WICCAN", yes = "ORTHODOX", yes = "SALVATION ARMY", yes = "DISCIPLES OF CHRIST", yes = "AFRICAN METHODIST EP", yes = "SIKH", yes = "CHURCH OF GOD", yes = "TAOIST", yes = "ANGLICAN"),
relig_affil = fct_relevel(relig_affil, ref = 'yes')) %>%
mutate(relig_affil = na_if(relig_affil, "UNKNOWN")) %>%
mutate(relig_affil = na_if(relig_affil, "PATIENT REFUSED")) -> vaxdfThemeMsRel
Race
vaxdfThemeMsRel %>%
mutate(race_5 = as_factor(PATIENT_RACE_DESC),
race_5 = fct_recode(race_5, Other = "OTHER",
Other = "UNKNOWN", Other = "CHOOSE NOT TO DISCLOSE",
Other = "NATIVE HAWAIIAN AND OTHER PACIFIC ISLANDER",
Other = "MIDDLE EASTERN/NORTH AFRICAN",
ASIAN = "ASIAN INDIAN", ASIAN = "OTHER ASIAN",
ASIAN = "JAPANESE", ASIAN = "KOREAN", ASIAN = "FILIPINO",
ASIAN = "CHINESE"),
race_5 = fct_relevel(race_5, ref = 'WHITE OR CAUCASIAN')) -> vaxdfThemeMsRelRa
Gender
vaxdfThemeMsRelRa %>%
mutate(gender = as_factor(PATIENT_GENDER_CD),
gender = fct_recode(gender, male = "M", female = "F"),
gender = fct_relevel(gender, ref = "male")) -> vaxdfThemeMsRelRaG
Language
vaxdfThemeMsRelRaG %>%
mutate(lang_3 = as_factor(PATIENT_LANGUAGE_DESC),
lang_3 = fct_recode(lang_3, English = "ENGLISH",
Other = "ARABIC", Other = "JAPANESE",
Other = "CHINESE, MANDARIN",
Other = "KOREAN", Other = "SIGN LANGUAGE",
Other = "RUSSIAN", Other = "SPANISH", Other = "ARMENIAN",
Other = "TURKISH", Other = "HINDI", Other = "BENGALI", Other = "FARSI; PERSIAN", Other = "ALBANIAN", Other = "HMONG", Other = "ROMANIAN",
Other = "PUNJABI", Other = "CROATIAN", Other = "CHALDEAN",
Other = "BURMESE", Other = "PORTUGUESE",
Other = "TAGALOG", Other = "FRENCH",
Other = "GERMAN", Other = "CHINESE, CANTONESE",
Other = "BOSNIAN", Other = "URDU",
Other = "UNKNOWN"),
lang_3 = fct_relevel(lang_3, ref = 'English')) -> vaxdfThemeMsRelRaGL
Ethnicity
vaxdfThemeMsRelRaGL %>%
mutate(ethnic_3 = as_factor(PATIENT_ETHNIC_GROUP_DESC)) %>%
mutate(ethnic_3 = na_if(ethnic_3, "UNKNOWN")) %>%
mutate(ethnic_3 = na_if(ethnic_3, "CHOOSE NOT TO DISCLOSE")) -> vaxdfThemeMsRelRaGLEth
Population density
vaxdfThemeMsRelRaGLEth %>%
mutate(pop_dens=E_TOTPOP/AREA_SQMI) -> vaxdfThemeMsRelRaGLEthPop
Patient Characteristics
Baseline Characteristics
vax_clean1 %>%
select(age_yrs, gender, race_5, ethnic_3, lang_3, relig_affil, mstat_5, pop_dens, RPL_THEMES, RPL_THEME1, RPL_THEME2, RPL_THEME3, RPL_THEME4, flu_2021, total_flu, any_pneum, total_cov_vax, total_shingrix) -> baseline
baseline %>% tbl_summary(label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", pop_dens ~ "Population Density"),
statistic = list(all_continuous() ~ "{mean} ({sd})"),
missing_text = "(Missing)")
| Characteristic |
N = 15,245 |
| Age |
49 (19) |
| Gender |
|
| male |
6,973 (46%) |
| female |
8,272 (54%) |
| Race |
|
| WHITE OR CAUCASIAN |
13,230 (87%) |
| BLACK OR AFRICAN AMERICAN |
946 (6.2%) |
| Other |
638 (4.2%) |
| ASIAN |
375 (2.5%) |
| AMERICAN INDIAN AND ALASKA NATIVE |
56 (0.4%) |
| Ethnicity |
|
| NON-HISPANIC |
14,401 (98%) |
| UNKNOWN |
0 (0%) |
| CHOOSE NOT TO DISCLOSE |
0 (0%) |
| HISPANIC |
302 (2.1%) |
| (Missing) |
542 |
| English Speaking |
|
| English |
15,081 (99%) |
| Other |
164 (1.1%) |
| Any Religious Affiliation |
|
| yes |
8,211 (57%) |
| no |
6,085 (43%) |
| PATIENT REFUSED |
0 (0%) |
| UNKNOWN |
0 (0%) |
| (Missing) |
949 |
| Marital Status |
|
| married |
6,198 (41%) |
| unknown |
3,236 (21%) |
| unmarried |
4,997 (33%) |
| div_sep |
507 (3.3%) |
| widow |
307 (2.0%) |
| Population Density |
2,291 (4,013) |
| (Missing) |
630 |
| Total SVI |
0.37 (0.26) |
| (Missing) |
638 |
| Soceioeconomic Status |
0.35 (0.25) |
| (Missing) |
688 |
| Household Composition |
0.39 (0.27) |
| (Missing) |
637 |
| Minority Status and Language |
0.48 (0.29) |
| (Missing) |
630 |
| Housing and Transportation |
0.44 (0.29) |
| (Missing) |
660 |
| flu_2021 |
3,196 (21%) |
| total_flu |
|
| 0 |
6,530 (43%) |
| 1 |
2,014 (13%) |
| 2 |
1,376 (9.0%) |
| 3 |
1,244 (8.2%) |
| 4 |
1,162 (7.6%) |
| 5 |
1,058 (6.9%) |
| 6 |
955 (6.3%) |
| 7 |
899 (5.9%) |
| 8 |
7 (<0.1%) |
| any_pneum |
0.60 (0.89) |
| total_cov_vax |
|
| 0 |
7,766 (51%) |
| 1 |
434 (2.8%) |
| 2 |
2,207 (14%) |
| 3 |
3,140 (21%) |
| 4 |
1,489 (9.8%) |
| 5 |
161 (1.1%) |
| 6 |
39 (0.3%) |
| 7 |
9 (<0.1%) |
| total_shingrix |
|
| 0 |
13,659 (90%) |
| 1 |
367 (2.4%) |
| 2 |
1,116 (7.3%) |
| 3 |
91 (0.6%) |
| 4 |
10 (<0.1%) |
| 5 |
2 (<0.1%) |
Baseline characteristics by Flu 2021
baseline %>% tbl_summary(by = flu_2021,
label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", pop_dens ~ "Population Density"),
statistic = list(all_continuous() ~ "{mean} ({sd})"),
missing_text = "(Missing)") %>% add_p()
There was an error in 'add_p()/add_difference()' for variable 'total_flu', p-value omitted:
Error in stats::fisher.test(c(6, 0, 2, 0, 6, 1, 2, 0, 0, 1, 6, 2, 0, 0, : FEXACT error 6 (f5xact). LDKEY=526 is too small for this problem: kval=37321247.
Try increasing the size of the workspace.
There was an error in 'add_p()/add_difference()' for variable 'total_cov_vax', p-value omitted:
Error in stats::fisher.test(c(2, 0, 4, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 2, : FEXACT error 7(location). LDSTP=15780 is too small for this problem,
(pastp=120.092, ipn_0:=ipoin[itp=402]=289, stp[ipn_0]=109.428).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'total_shingrix', p-value omitted:
Error in stats::fisher.test(c(0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, : FEXACT error 7(location). LDSTP=15780 is too small for this problem,
(pastp=291.353, ipn_0:=ipoin[itp=483]=3585, stp[ipn_0]=275.121).
Increase workspace or consider using 'simulate.p.value=TRUE'
| Characteristic |
0, N = 12,049 |
1, N = 3,196 |
p-value |
| Age |
49 (19) |
51 (19) |
<0.001 |
| Gender |
|
|
<0.001 |
| male |
5,604 (47%) |
1,369 (43%) |
|
| female |
6,445 (53%) |
1,827 (57%) |
|
| Race |
|
|
<0.001 |
| WHITE OR CAUCASIAN |
10,440 (87%) |
2,790 (87%) |
|
| BLACK OR AFRICAN AMERICAN |
786 (6.5%) |
160 (5.0%) |
|
| Other |
533 (4.4%) |
105 (3.3%) |
|
| ASIAN |
246 (2.0%) |
129 (4.0%) |
|
| AMERICAN INDIAN AND ALASKA NATIVE |
44 (0.4%) |
12 (0.4%) |
|
| Ethnicity |
|
|
0.8 |
| NON-HISPANIC |
11,357 (98%) |
3,044 (98%) |
|
| UNKNOWN |
0 (0%) |
0 (0%) |
|
| CHOOSE NOT TO DISCLOSE |
0 (0%) |
0 (0%) |
|
| HISPANIC |
236 (2.0%) |
66 (2.1%) |
|
| (Missing) |
456 |
86 |
|
| English Speaking |
|
|
0.070 |
| English |
11,910 (99%) |
3,171 (99%) |
|
| Other |
139 (1.2%) |
25 (0.8%) |
|
| Any Religious Affiliation |
|
|
0.013 |
| yes |
6,376 (57%) |
1,835 (59%) |
|
| no |
4,831 (43%) |
1,254 (41%) |
|
| PATIENT REFUSED |
0 (0%) |
0 (0%) |
|
| UNKNOWN |
0 (0%) |
0 (0%) |
|
| (Missing) |
842 |
107 |
|
| Marital Status |
|
|
<0.001 |
| married |
4,707 (39%) |
1,491 (47%) |
|
| unknown |
2,605 (22%) |
631 (20%) |
|
| unmarried |
4,103 (34%) |
894 (28%) |
|
| div_sep |
405 (3.4%) |
102 (3.2%) |
|
| widow |
229 (1.9%) |
78 (2.4%) |
|
| Population Density |
2,273 (4,243) |
2,356 (3,022) |
<0.001 |
| (Missing) |
563 |
67 |
|
| Total SVI |
0.39 (0.26) |
0.30 (0.23) |
<0.001 |
| (Missing) |
570 |
68 |
|
| Soceioeconomic Status |
0.37 (0.26) |
0.28 (0.23) |
<0.001 |
| (Missing) |
598 |
90 |
|
| Household Composition |
0.41 (0.27) |
0.32 (0.24) |
<0.001 |
| (Missing) |
569 |
68 |
|
| Minority Status and Language |
0.47 (0.28) |
0.51 (0.29) |
<0.001 |
| (Missing) |
563 |
67 |
|
| Housing and Transportation |
0.45 (0.29) |
0.39 (0.28) |
<0.001 |
| (Missing) |
582 |
78 |
|
| total_flu |
|
|
|
| 0 |
6,530 (54%) |
0 (0%) |
|
| 1 |
1,873 (16%) |
141 (4.4%) |
|
| 2 |
1,103 (9.2%) |
273 (8.5%) |
|
| 3 |
914 (7.6%) |
330 (10%) |
|
| 4 |
734 (6.1%) |
428 (13%) |
|
| 5 |
527 (4.4%) |
531 (17%) |
|
| 6 |
346 (2.9%) |
609 (19%) |
|
| 7 |
22 (0.2%) |
877 (27%) |
|
| 8 |
0 (0%) |
7 (0.2%) |
|
| any_pneum |
0.43 (0.76) |
1.27 (1.02) |
<0.001 |
| total_cov_vax |
|
|
|
| 0 |
7,562 (63%) |
204 (6.4%) |
|
| 1 |
362 (3.0%) |
72 (2.3%) |
|
| 2 |
1,758 (15%) |
449 (14%) |
|
| 3 |
1,776 (15%) |
1,364 (43%) |
|
| 4 |
559 (4.6%) |
930 (29%) |
|
| 5 |
29 (0.2%) |
132 (4.1%) |
|
| 6 |
3 (<0.1%) |
36 (1.1%) |
|
| 7 |
0 (0%) |
9 (0.3%) |
|
| total_shingrix |
|
|
|
| 0 |
11,503 (95%) |
2,156 (67%) |
|
| 1 |
187 (1.6%) |
180 (5.6%) |
|
| 2 |
332 (2.8%) |
784 (25%) |
|
| 3 |
24 (0.2%) |
67 (2.1%) |
|
| 4 |
3 (<0.1%) |
7 (0.2%) |
|
| 5 |
0 (0%) |
2 (<0.1%) |
|
Baseline characteristics by pneumonia
baseline %>% tbl_summary(by = any_pneum,
label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", pop_dens ~ "Population Density"),
statistic = list(all_continuous() ~ "{mean} ({sd})"),
missing_text = "(Missing)") %>% add_p()
There was an error in 'add_p()/add_difference()' for variable 'gender', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, : FEXACT error 7(location). LDSTP=15780 is too small for this problem,
(pastp=261.362, ipn_0:=ipoin[itp=270]=4455, stp[ipn_0]=261.333).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'race_5', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'relig_affil', p-value omitted:
Error in stats::fisher.test(structure(c(2L, NA, 1L, NA, 1L, 2L, 2L, 1L, : FEXACT error 7(location). LDSTP=15960 is too small for this problem,
(pastp=41.9351, ipn_0:=ipoin[itp=384]=80, stp[ipn_0]=39.532).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'mstat_5', p-value omitted:
Error in stats::fisher.test(structure(c(2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'flu_2021', p-value omitted:
Error in stats::fisher.test(c(0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, : FEXACT error 7(location). LDSTP=15780 is too small for this problem,
(pastp=40.9276, ipn_0:=ipoin[itp=439]=1112, stp[ipn_0]=35.7199).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'total_flu', p-value omitted:
Error in stats::fisher.test(c(6, 0, 2, 0, 6, 1, 2, 0, 0, 1, 6, 2, 0, 0, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'total_cov_vax', p-value omitted:
Error in stats::fisher.test(c(2, 0, 4, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 2, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'total_shingrix', p-value omitted:
Error in stats::fisher.test(c(0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, : FEXACT error 501.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
| Characteristic |
0, N = 9,506 |
1, N = 2,820 |
2, N = 2,517 |
3, N = 310 |
4, N = 65 |
5, N = 16 |
6, N = 7 |
7, N = 2 |
8, N = 1 |
9, N = 1 |
p-value |
| Age |
48 (19) |
52 (20) |
50 (19) |
56 (18) |
50 (27) |
46 (33) |
63 (27) |
41 (51) |
3 (NA) |
69 (NA) |
<0.001 |
| Gender |
|
|
|
|
|
|
|
|
|
|
|
| male |
4,258 (45%) |
1,325 (47%) |
1,185 (47%) |
161 (52%) |
30 (46%) |
8 (50%) |
4 (57%) |
1 (50%) |
0 (0%) |
1 (100%) |
|
| female |
5,248 (55%) |
1,495 (53%) |
1,332 (53%) |
149 (48%) |
35 (54%) |
8 (50%) |
3 (43%) |
1 (50%) |
1 (100%) |
0 (0%) |
|
| Race |
|
|
|
|
|
|
|
|
|
|
|
| WHITE OR CAUCASIAN |
8,205 (86%) |
2,441 (87%) |
2,232 (89%) |
268 (86%) |
59 (91%) |
14 (88%) |
7 (100%) |
2 (100%) |
1 (100%) |
1 (100%) |
|
| BLACK OR AFRICAN AMERICAN |
604 (6.4%) |
187 (6.6%) |
133 (5.3%) |
19 (6.1%) |
2 (3.1%) |
1 (6.2%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| Other |
437 (4.6%) |
108 (3.8%) |
78 (3.1%) |
12 (3.9%) |
2 (3.1%) |
1 (6.2%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| ASIAN |
224 (2.4%) |
74 (2.6%) |
67 (2.7%) |
8 (2.6%) |
2 (3.1%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| AMERICAN INDIAN AND ALASKA NATIVE |
36 (0.4%) |
10 (0.4%) |
7 (0.3%) |
3 (1.0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| Ethnicity |
|
|
|
|
|
|
|
|
|
|
0.8 |
| NON-HISPANIC |
8,922 (98%) |
2,692 (98%) |
2,402 (98%) |
296 (99%) |
62 (97%) |
16 (100%) |
7 (100%) |
2 (100%) |
1 (100%) |
1 (100%) |
|
| UNKNOWN |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| CHOOSE NOT TO DISCLOSE |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| HISPANIC |
187 (2.1%) |
60 (2.2%) |
50 (2.0%) |
3 (1.0%) |
2 (3.1%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| (Missing) |
397 |
68 |
65 |
11 |
1 |
0 |
0 |
0 |
0 |
0 |
|
| English Speaking |
|
|
|
|
|
|
|
|
|
|
0.025 |
| English |
9,398 (99%) |
2,781 (99%) |
2,504 (99%) |
307 (99%) |
65 (100%) |
15 (94%) |
7 (100%) |
2 (100%) |
1 (100%) |
1 (100%) |
|
| Other |
108 (1.1%) |
39 (1.4%) |
13 (0.5%) |
3 (1.0%) |
0 (0%) |
1 (6.2%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| Any Religious Affiliation |
|
|
|
|
|
|
|
|
|
|
|
| yes |
4,913 (56%) |
1,620 (60%) |
1,444 (59%) |
182 (60%) |
32 (52%) |
13 (81%) |
3 (43%) |
2 (100%) |
1 (100%) |
1 (100%) |
|
| no |
3,858 (44%) |
1,084 (40%) |
985 (41%) |
121 (40%) |
30 (48%) |
3 (19%) |
4 (57%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| PATIENT REFUSED |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| UNKNOWN |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| (Missing) |
735 |
116 |
88 |
7 |
3 |
0 |
0 |
0 |
0 |
0 |
|
| Marital Status |
|
|
|
|
|
|
|
|
|
|
|
| married |
3,676 (39%) |
1,207 (43%) |
1,107 (44%) |
168 (54%) |
30 (46%) |
7 (44%) |
2 (29%) |
1 (50%) |
0 (0%) |
0 (0%) |
|
| unknown |
2,179 (23%) |
516 (18%) |
475 (19%) |
48 (15%) |
13 (20%) |
2 (12%) |
1 (14%) |
0 (0%) |
1 (100%) |
1 (100%) |
|
| unmarried |
3,180 (33%) |
904 (32%) |
812 (32%) |
72 (23%) |
20 (31%) |
6 (38%) |
2 (29%) |
1 (50%) |
0 (0%) |
0 (0%) |
|
| div_sep |
312 (3.3%) |
104 (3.7%) |
74 (2.9%) |
16 (5.2%) |
1 (1.5%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| widow |
159 (1.7%) |
89 (3.2%) |
49 (1.9%) |
6 (1.9%) |
1 (1.5%) |
1 (6.2%) |
2 (29%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| Population Density |
2,303 (4,465) |
2,266 (3,521) |
2,266 (2,519) |
2,370 (4,172) |
2,309 (2,257) |
2,651 (2,273) |
1,279 (1,263) |
2,373 (178) |
4,275 (NA) |
1,034 (NA) |
0.3 |
| (Missing) |
451 |
109 |
60 |
8 |
2 |
0 |
0 |
0 |
0 |
0 |
|
| Total SVI |
0.38 (0.26) |
0.35 (0.25) |
0.34 (0.25) |
0.36 (0.24) |
0.41 (0.28) |
0.36 (0.23) |
0.45 (0.26) |
0.09 (0.04) |
0.50 (NA) |
0.37 (NA) |
<0.001 |
| (Missing) |
458 |
110 |
60 |
8 |
2 |
0 |
0 |
0 |
0 |
0 |
|
| Soceioeconomic Status |
0.36 (0.26) |
0.33 (0.25) |
0.32 (0.25) |
0.33 (0.24) |
0.38 (0.27) |
0.36 (0.26) |
0.43 (0.26) |
0.07 (0.04) |
0.28 (NA) |
0.45 (NA) |
<0.001 |
| (Missing) |
483 |
122 |
71 |
10 |
2 |
0 |
0 |
0 |
0 |
0 |
|
| Household Composition |
0.41 (0.27) |
0.37 (0.26) |
0.35 (0.26) |
0.39 (0.26) |
0.44 (0.29) |
0.41 (0.22) |
0.54 (0.21) |
0.26 (0.06) |
0.38 (NA) |
0.77 (NA) |
<0.001 |
| (Missing) |
457 |
110 |
60 |
8 |
2 |
0 |
0 |
0 |
0 |
0 |
|
| Minority Status and Language |
0.47 (0.28) |
0.48 (0.29) |
0.49 (0.29) |
0.49 (0.29) |
0.46 (0.31) |
0.51 (0.33) |
0.31 (0.24) |
0.47 (0.33) |
0.70 (NA) |
0.08 (NA) |
0.12 |
| (Missing) |
451 |
109 |
60 |
8 |
2 |
0 |
0 |
0 |
0 |
0 |
|
| Housing and Transportation |
0.45 (0.29) |
0.43 (0.29) |
0.41 (0.28) |
0.43 (0.27) |
0.46 (0.27) |
0.38 (0.24) |
0.52 (0.30) |
0.09 (0.03) |
0.74 (NA) |
0.33 (NA) |
<0.001 |
| (Missing) |
471 |
114 |
65 |
8 |
2 |
0 |
0 |
0 |
0 |
0 |
|
| flu_2021 |
890 (9.4%) |
863 (31%) |
1,212 (48%) |
178 (57%) |
34 (52%) |
12 (75%) |
4 (57%) |
2 (100%) |
0 (0%) |
1 (100%) |
|
| total_flu |
|
|
|
|
|
|
|
|
|
|
|
| 0 |
6,025 (63%) |
369 (13%) |
126 (5.0%) |
9 (2.9%) |
1 (1.5%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| 1 |
1,247 (13%) |
531 (19%) |
217 (8.6%) |
15 (4.8%) |
3 (4.6%) |
1 (6.2%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| 2 |
656 (6.9%) |
399 (14%) |
293 (12%) |
18 (5.8%) |
7 (11%) |
0 (0%) |
2 (29%) |
0 (0%) |
1 (100%) |
0 (0%) |
|
| 3 |
461 (4.8%) |
376 (13%) |
361 (14%) |
32 (10%) |
8 (12%) |
5 (31%) |
0 (0%) |
1 (50%) |
0 (0%) |
0 (0%) |
|
| 4 |
346 (3.6%) |
353 (13%) |
400 (16%) |
48 (15%) |
12 (18%) |
2 (12%) |
1 (14%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| 5 |
301 (3.2%) |
286 (10%) |
396 (16%) |
59 (19%) |
12 (18%) |
4 (25%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| 6 |
267 (2.8%) |
258 (9.1%) |
346 (14%) |
62 (20%) |
15 (23%) |
2 (12%) |
3 (43%) |
1 (50%) |
0 (0%) |
1 (100%) |
|
| 7 |
203 (2.1%) |
243 (8.6%) |
377 (15%) |
66 (21%) |
7 (11%) |
2 (12%) |
1 (14%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| 8 |
0 (0%) |
5 (0.2%) |
1 (<0.1%) |
1 (0.3%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| total_cov_vax |
|
|
|
|
|
|
|
|
|
|
|
| 0 |
6,076 (64%) |
1,066 (38%) |
560 (22%) |
45 (15%) |
12 (18%) |
4 (25%) |
1 (14%) |
1 (50%) |
1 (100%) |
0 (0%) |
|
| 1 |
261 (2.7%) |
93 (3.3%) |
73 (2.9%) |
5 (1.6%) |
2 (3.1%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| 2 |
1,252 (13%) |
471 (17%) |
408 (16%) |
55 (18%) |
16 (25%) |
3 (19%) |
2 (29%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| 3 |
1,461 (15%) |
746 (26%) |
820 (33%) |
89 (29%) |
19 (29%) |
3 (19%) |
1 (14%) |
0 (0%) |
0 (0%) |
1 (100%) |
|
| 4 |
419 (4.4%) |
400 (14%) |
555 (22%) |
94 (30%) |
12 (18%) |
6 (38%) |
2 (29%) |
1 (50%) |
0 (0%) |
0 (0%) |
|
| 5 |
29 (0.3%) |
35 (1.2%) |
75 (3.0%) |
19 (6.1%) |
2 (3.1%) |
0 (0%) |
1 (14%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| 6 |
6 (<0.1%) |
7 (0.2%) |
22 (0.9%) |
2 (0.6%) |
2 (3.1%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| 7 |
2 (<0.1%) |
2 (<0.1%) |
4 (0.2%) |
1 (0.3%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| total_shingrix |
|
|
|
|
|
|
|
|
|
|
|
| 0 |
9,207 (97%) |
2,331 (83%) |
1,868 (74%) |
192 (62%) |
46 (71%) |
9 (56%) |
3 (43%) |
2 (100%) |
1 (100%) |
0 (0%) |
|
| 1 |
82 (0.9%) |
131 (4.6%) |
136 (5.4%) |
15 (4.8%) |
3 (4.6%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| 2 |
204 (2.1%) |
330 (12%) |
470 (19%) |
88 (28%) |
13 (20%) |
6 (38%) |
4 (57%) |
0 (0%) |
0 (0%) |
1 (100%) |
|
| 3 |
10 (0.1%) |
26 (0.9%) |
38 (1.5%) |
13 (4.2%) |
3 (4.6%) |
1 (6.2%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| 4 |
2 (<0.1%) |
2 (<0.1%) |
4 (0.2%) |
2 (0.6%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| 5 |
1 (<0.1%) |
0 (0%) |
1 (<0.1%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
Baseline characteristics by Shingrix
baseline %>% tbl_summary(by = total_shingrix,
label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", pop_dens ~ "Population Density"),
statistic = list(all_continuous() ~ "{mean} ({sd})"),
missing_text = "(Missing)") %>% add_p()
There was an error in 'add_p()/add_difference()' for variable 'race_5', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'relig_affil', p-value omitted:
Error in stats::fisher.test(structure(c(2L, NA, 1L, NA, 1L, 2L, 2L, 1L, : FEXACT error 7(location). LDSTP=15960 is too small for this problem,
(pastp=283.429, ipn_0:=ipoin[itp=172]=4617, stp[ipn_0]=277.031).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'mstat_5', p-value omitted:
Error in stats::fisher.test(structure(c(2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'flu_2021', p-value omitted:
Error in stats::fisher.test(c(0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, : FEXACT error 7(location). LDSTP=15780 is too small for this problem,
(pastp=291.353, ipn_0:=ipoin[itp=483]=3585, stp[ipn_0]=275.121).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'total_flu', p-value omitted:
Error in stats::fisher.test(c(6, 0, 2, 0, 6, 1, 2, 0, 0, 1, 6, 2, 0, 0, : FEXACT error 501.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'total_cov_vax', p-value omitted:
Error in stats::fisher.test(c(2, 0, 4, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 2, : FEXACT error 501.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
| Characteristic |
0, N = 13,659 |
1, N = 367 |
2, N = 1,116 |
3, N = 91 |
4, N = 10 |
5, N = 2 |
p-value |
| Age |
48 (19) |
62 (14) |
66 (10) |
67 (11) |
68 (7) |
65 (6) |
<0.001 |
| Gender |
|
|
|
|
|
|
0.2 |
| male |
6,285 (46%) |
162 (44%) |
479 (43%) |
41 (45%) |
6 (60%) |
0 (0%) |
|
| female |
7,374 (54%) |
205 (56%) |
637 (57%) |
50 (55%) |
4 (40%) |
2 (100%) |
|
| Race |
|
|
|
|
|
|
|
| WHITE OR CAUCASIAN |
11,809 (86%) |
324 (88%) |
1,003 (90%) |
82 (90%) |
10 (100%) |
2 (100%) |
|
| BLACK OR AFRICAN AMERICAN |
883 (6.5%) |
22 (6.0%) |
37 (3.3%) |
4 (4.4%) |
0 (0%) |
0 (0%) |
|
| Other |
587 (4.3%) |
13 (3.5%) |
35 (3.1%) |
3 (3.3%) |
0 (0%) |
0 (0%) |
|
| ASIAN |
328 (2.4%) |
8 (2.2%) |
38 (3.4%) |
1 (1.1%) |
0 (0%) |
0 (0%) |
|
| AMERICAN INDIAN AND ALASKA NATIVE |
52 (0.4%) |
0 (0%) |
3 (0.3%) |
1 (1.1%) |
0 (0%) |
0 (0%) |
|
| Ethnicity |
|
|
|
|
|
|
0.7 |
| NON-HISPANIC |
12,898 (98%) |
352 (98%) |
1,052 (99%) |
87 (99%) |
10 (100%) |
2 (100%) |
|
| UNKNOWN |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| CHOOSE NOT TO DISCLOSE |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| HISPANIC |
279 (2.1%) |
6 (1.7%) |
16 (1.5%) |
1 (1.1%) |
0 (0%) |
0 (0%) |
|
| (Missing) |
482 |
9 |
48 |
3 |
0 |
0 |
|
| English Speaking |
|
|
|
|
|
|
0.7 |
| English |
13,507 (99%) |
363 (99%) |
1,108 (99%) |
91 (100%) |
10 (100%) |
2 (100%) |
|
| Other |
152 (1.1%) |
4 (1.1%) |
8 (0.7%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| Any Religious Affiliation |
|
|
|
|
|
|
|
| yes |
7,163 (56%) |
247 (69%) |
729 (67%) |
62 (70%) |
8 (89%) |
2 (100%) |
|
| no |
5,585 (44%) |
113 (31%) |
360 (33%) |
26 (30%) |
1 (11%) |
0 (0%) |
|
| PATIENT REFUSED |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| UNKNOWN |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| (Missing) |
911 |
7 |
27 |
3 |
1 |
0 |
|
| Marital Status |
|
|
|
|
|
|
|
| married |
5,253 (38%) |
206 (56%) |
669 (60%) |
61 (67%) |
7 (70%) |
2 (100%) |
|
| unknown |
2,965 (22%) |
71 (19%) |
184 (16%) |
15 (16%) |
1 (10%) |
0 (0%) |
|
| unmarried |
4,748 (35%) |
67 (18%) |
171 (15%) |
10 (11%) |
1 (10%) |
0 (0%) |
|
| div_sep |
444 (3.3%) |
15 (4.1%) |
46 (4.1%) |
2 (2.2%) |
0 (0%) |
0 (0%) |
|
| widow |
249 (1.8%) |
8 (2.2%) |
46 (4.1%) |
3 (3.3%) |
1 (10%) |
0 (0%) |
|
| Population Density |
2,314 (4,165) |
1,988 (2,015) |
2,059 (2,179) |
2,918 (4,801) |
2,947 (2,257) |
2,127 (641) |
0.4 |
| (Missing) |
598 |
4 |
26 |
2 |
0 |
0 |
|
| Total SVI |
0.38 (0.26) |
0.33 (0.25) |
0.28 (0.22) |
0.29 (0.25) |
0.31 (0.25) |
0.65 (0.21) |
<0.001 |
| (Missing) |
606 |
4 |
26 |
2 |
0 |
0 |
|
| Soceioeconomic Status |
0.36 (0.25) |
0.31 (0.25) |
0.25 (0.22) |
0.24 (0.25) |
0.25 (0.19) |
0.61 (0.23) |
<0.001 |
| (Missing) |
647 |
4 |
34 |
3 |
0 |
0 |
|
| Household Composition |
0.40 (0.27) |
0.37 (0.26) |
0.31 (0.23) |
0.34 (0.24) |
0.25 (0.21) |
0.39 (0.38) |
<0.001 |
| (Missing) |
605 |
4 |
26 |
2 |
0 |
0 |
|
| Minority Status and Language |
0.48 (0.29) |
0.47 (0.30) |
0.49 (0.29) |
0.53 (0.28) |
0.46 (0.26) |
0.82 (0.15) |
0.2 |
| (Missing) |
598 |
4 |
26 |
2 |
0 |
0 |
|
| Housing and Transportation |
0.44 (0.29) |
0.40 (0.28) |
0.37 (0.27) |
0.38 (0.31) |
0.51 (0.31) |
0.64 (0.12) |
<0.001 |
| (Missing) |
621 |
6 |
30 |
3 |
0 |
0 |
|
| flu_2021 |
2,156 (16%) |
180 (49%) |
784 (70%) |
67 (74%) |
7 (70%) |
2 (100%) |
|
| total_flu |
|
|
|
|
|
|
|
| 0 |
6,469 (47%) |
33 (9.0%) |
27 (2.4%) |
1 (1.1%) |
0 (0%) |
0 (0%) |
|
| 1 |
1,929 (14%) |
39 (11%) |
43 (3.9%) |
3 (3.3%) |
0 (0%) |
0 (0%) |
|
| 2 |
1,257 (9.2%) |
25 (6.8%) |
86 (7.7%) |
8 (8.8%) |
0 (0%) |
0 (0%) |
|
| 3 |
1,054 (7.7%) |
64 (17%) |
114 (10%) |
10 (11%) |
2 (20%) |
0 (0%) |
|
| 4 |
919 (6.7%) |
61 (17%) |
168 (15%) |
13 (14%) |
1 (10%) |
0 (0%) |
|
| 5 |
809 (5.9%) |
43 (12%) |
194 (17%) |
12 (13%) |
0 (0%) |
0 (0%) |
|
| 6 |
665 (4.9%) |
57 (16%) |
209 (19%) |
18 (20%) |
4 (40%) |
2 (100%) |
|
| 7 |
553 (4.0%) |
45 (12%) |
272 (24%) |
26 (29%) |
3 (30%) |
0 (0%) |
|
| 8 |
4 (<0.1%) |
0 (0%) |
3 (0.3%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| any_pneum |
0.51 (0.82) |
1.25 (0.88) |
1.48 (1.01) |
1.74 (1.02) |
1.60 (1.07) |
1.00 (1.41) |
<0.001 |
| total_cov_vax |
|
|
|
|
|
|
|
| 0 |
7,594 (56%) |
87 (24%) |
77 (6.9%) |
7 (7.7%) |
1 (10%) |
0 (0%) |
|
| 1 |
403 (3.0%) |
11 (3.0%) |
17 (1.5%) |
3 (3.3%) |
0 (0%) |
0 (0%) |
|
| 2 |
2,008 (15%) |
65 (18%) |
128 (11%) |
5 (5.5%) |
1 (10%) |
0 (0%) |
|
| 3 |
2,642 (19%) |
116 (32%) |
356 (32%) |
24 (26%) |
1 (10%) |
1 (50%) |
|
| 4 |
901 (6.6%) |
76 (21%) |
465 (42%) |
42 (46%) |
4 (40%) |
1 (50%) |
|
| 5 |
92 (0.7%) |
9 (2.5%) |
53 (4.7%) |
6 (6.6%) |
1 (10%) |
0 (0%) |
|
| 6 |
15 (0.1%) |
3 (0.8%) |
16 (1.4%) |
3 (3.3%) |
2 (20%) |
0 (0%) |
|
| 7 |
4 (<0.1%) |
0 (0%) |
4 (0.4%) |
1 (1.1%) |
0 (0%) |
0 (0%) |
|
Baseline Characteristics by Total_COVID
baseline %>% tbl_summary(by = total_cov_vax,
label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", pop_dens ~ "Population Density"),
statistic = list(all_continuous() ~ "{mean} ({sd})"),
missing_text = "(Missing)") %>% add_p()
There was an error in 'add_p()/add_difference()' for variable 'gender', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, : FEXACT error 7(location). LDSTP=15780 is too small for this problem,
(pastp=428.53, ipn_0:=ipoin[itp=51]=11, stp[ipn_0]=427.494).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'race_5', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'ethnic_3', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, : FEXACT error 7(location). LDSTP=15900 is too small for this problem,
(pastp=196.676, ipn_0:=ipoin[itp=361]=811, stp[ipn_0]=197.454).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'relig_affil', p-value omitted:
Error in stats::fisher.test(structure(c(2L, NA, 1L, NA, 1L, 2L, 2L, 1L, : FEXACT error 7(location). LDSTP=15960 is too small for this problem,
(pastp=398.221, ipn_0:=ipoin[itp=284]=7733, stp[ipn_0]=398.559).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'mstat_5', p-value omitted:
Error in stats::fisher.test(structure(c(2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'flu_2021', p-value omitted:
Error in stats::fisher.test(c(0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, : FEXACT error 7(location). LDSTP=15780 is too small for this problem,
(pastp=120.092, ipn_0:=ipoin[itp=402]=289, stp[ipn_0]=109.428).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'total_flu', p-value omitted:
Error in stats::fisher.test(c(6, 0, 2, 0, 6, 1, 2, 0, 0, 1, 6, 2, 0, 0, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'total_shingrix', p-value omitted:
Error in stats::fisher.test(c(0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, : FEXACT error 501.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
| Characteristic |
0, N = 7,766 |
1, N = 434 |
2, N = 2,207 |
3, N = 3,140 |
4, N = 1,489 |
5, N = 161 |
6, N = 39 |
7, N = 9 |
p-value |
| Age |
49 (20) |
47 (18) |
46 (19) |
49 (18) |
59 (17) |
53 (18) |
62 (18) |
49 (21) |
<0.001 |
| Gender |
|
|
|
|
|
|
|
|
|
| male |
3,587 (46%) |
192 (44%) |
1,038 (47%) |
1,399 (45%) |
669 (45%) |
70 (43%) |
14 (36%) |
4 (44%) |
|
| female |
4,179 (54%) |
242 (56%) |
1,169 (53%) |
1,741 (55%) |
820 (55%) |
91 (57%) |
25 (64%) |
5 (56%) |
|
| Race |
|
|
|
|
|
|
|
|
|
| WHITE OR CAUCASIAN |
6,756 (87%) |
380 (88%) |
1,863 (84%) |
2,746 (87%) |
1,297 (87%) |
147 (91%) |
34 (87%) |
7 (78%) |
|
| BLACK OR AFRICAN AMERICAN |
504 (6.5%) |
20 (4.6%) |
169 (7.7%) |
166 (5.3%) |
80 (5.4%) |
4 (2.5%) |
2 (5.1%) |
1 (11%) |
|
| Other |
344 (4.4%) |
20 (4.6%) |
110 (5.0%) |
112 (3.6%) |
46 (3.1%) |
4 (2.5%) |
2 (5.1%) |
0 (0%) |
|
| ASIAN |
130 (1.7%) |
14 (3.2%) |
56 (2.5%) |
107 (3.4%) |
61 (4.1%) |
5 (3.1%) |
1 (2.6%) |
1 (11%) |
|
| AMERICAN INDIAN AND ALASKA NATIVE |
32 (0.4%) |
0 (0%) |
9 (0.4%) |
9 (0.3%) |
5 (0.3%) |
1 (0.6%) |
0 (0%) |
0 (0%) |
|
| Ethnicity |
|
|
|
|
|
|
|
|
|
| NON-HISPANIC |
7,309 (98%) |
413 (97%) |
2,078 (97%) |
2,985 (98%) |
1,417 (99%) |
154 (99%) |
37 (95%) |
8 (89%) |
|
| UNKNOWN |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| CHOOSE NOT TO DISCLOSE |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| HISPANIC |
140 (1.9%) |
12 (2.8%) |
62 (2.9%) |
65 (2.1%) |
19 (1.3%) |
1 (0.6%) |
2 (5.1%) |
1 (11%) |
|
| (Missing) |
317 |
9 |
67 |
90 |
53 |
6 |
0 |
0 |
|
| English Speaking |
|
|
|
|
|
|
|
|
0.5 |
| English |
7,679 (99%) |
428 (99%) |
2,177 (99%) |
3,110 (99%) |
1,479 (99%) |
160 (99%) |
39 (100%) |
9 (100%) |
|
| Other |
87 (1.1%) |
6 (1.4%) |
30 (1.4%) |
30 (1.0%) |
10 (0.7%) |
1 (0.6%) |
0 (0%) |
0 (0%) |
|
| Any Religious Affiliation |
|
|
|
|
|
|
|
|
|
| yes |
4,035 (57%) |
239 (58%) |
1,210 (58%) |
1,711 (57%) |
894 (62%) |
93 (60%) |
25 (68%) |
4 (44%) |
|
| no |
3,106 (43%) |
174 (42%) |
894 (42%) |
1,293 (43%) |
539 (38%) |
62 (40%) |
12 (32%) |
5 (56%) |
|
| PATIENT REFUSED |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| UNKNOWN |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| (Missing) |
625 |
21 |
103 |
136 |
56 |
6 |
2 |
0 |
|
| Marital Status |
|
|
|
|
|
|
|
|
|
| married |
3,013 (39%) |
147 (34%) |
782 (35%) |
1,362 (43%) |
790 (53%) |
82 (51%) |
16 (41%) |
6 (67%) |
|
| unknown |
1,478 (19%) |
120 (28%) |
590 (27%) |
741 (24%) |
262 (18%) |
33 (20%) |
11 (28%) |
1 (11%) |
|
| unmarried |
2,834 (36%) |
143 (33%) |
732 (33%) |
891 (28%) |
348 (23%) |
39 (24%) |
8 (21%) |
2 (22%) |
|
| div_sep |
280 (3.6%) |
17 (3.9%) |
65 (2.9%) |
95 (3.0%) |
42 (2.8%) |
5 (3.1%) |
3 (7.7%) |
0 (0%) |
|
| widow |
161 (2.1%) |
7 (1.6%) |
38 (1.7%) |
51 (1.6%) |
47 (3.2%) |
2 (1.2%) |
1 (2.6%) |
0 (0%) |
|
| Population Density |
2,281 (4,827) |
2,477 (5,536) |
2,245 (2,647) |
2,282 (2,952) |
2,322 (2,424) |
2,662 (2,511) |
2,869 (3,429) |
1,774 (1,641) |
<0.001 |
| (Missing) |
428 |
19 |
67 |
76 |
35 |
3 |
2 |
0 |
|
| Total SVI |
0.40 (0.26) |
0.36 (0.27) |
0.36 (0.26) |
0.32 (0.24) |
0.30 (0.23) |
0.28 (0.23) |
0.34 (0.23) |
0.31 (0.23) |
<0.001 |
| (Missing) |
434 |
19 |
69 |
76 |
35 |
3 |
2 |
0 |
|
| Soceioeconomic Status |
0.39 (0.26) |
0.34 (0.26) |
0.34 (0.25) |
0.30 (0.24) |
0.27 (0.23) |
0.24 (0.24) |
0.26 (0.23) |
0.21 (0.17) |
<0.001 |
| (Missing) |
444 |
21 |
73 |
96 |
49 |
3 |
2 |
0 |
|
| Household Composition |
0.43 (0.27) |
0.39 (0.27) |
0.39 (0.26) |
0.35 (0.25) |
0.31 (0.24) |
0.29 (0.24) |
0.27 (0.21) |
0.32 (0.22) |
<0.001 |
| (Missing) |
433 |
19 |
69 |
76 |
35 |
3 |
2 |
0 |
|
| Minority Status and Language |
0.46 (0.28) |
0.47 (0.28) |
0.48 (0.29) |
0.50 (0.29) |
0.51 (0.29) |
0.55 (0.29) |
0.67 (0.25) |
0.53 (0.29) |
<0.001 |
| (Missing) |
428 |
19 |
67 |
76 |
35 |
3 |
2 |
0 |
|
| Housing and Transportation |
0.46 (0.29) |
0.43 (0.28) |
0.43 (0.29) |
0.40 (0.28) |
0.39 (0.28) |
0.35 (0.26) |
0.44 (0.28) |
0.43 (0.27) |
<0.001 |
| (Missing) |
440 |
19 |
71 |
83 |
40 |
5 |
2 |
0 |
|
| flu_2021 |
204 (2.6%) |
72 (17%) |
449 (20%) |
1,364 (43%) |
930 (62%) |
132 (82%) |
36 (92%) |
9 (100%) |
|
| total_flu |
|
|
|
|
|
|
|
|
|
| 0 |
4,886 (63%) |
167 (38%) |
675 (31%) |
601 (19%) |
192 (13%) |
7 (4.3%) |
2 (5.1%) |
0 (0%) |
|
| 1 |
1,206 (16%) |
65 (15%) |
336 (15%) |
317 (10%) |
85 (5.7%) |
4 (2.5%) |
1 (2.6%) |
0 (0%) |
|
| 2 |
618 (8.0%) |
49 (11%) |
259 (12%) |
324 (10%) |
116 (7.8%) |
9 (5.6%) |
1 (2.6%) |
0 (0%) |
|
| 3 |
424 (5.5%) |
47 (11%) |
247 (11%) |
349 (11%) |
164 (11%) |
10 (6.2%) |
2 (5.1%) |
1 (11%) |
|
| 4 |
304 (3.9%) |
35 (8.1%) |
240 (11%) |
363 (12%) |
199 (13%) |
13 (8.1%) |
5 (13%) |
3 (33%) |
|
| 5 |
193 (2.5%) |
40 (9.2%) |
195 (8.8%) |
407 (13%) |
187 (13%) |
28 (17%) |
8 (21%) |
0 (0%) |
|
| 6 |
96 (1.2%) |
23 (5.3%) |
156 (7.1%) |
397 (13%) |
247 (17%) |
28 (17%) |
5 (13%) |
3 (33%) |
|
| 7 |
39 (0.5%) |
8 (1.8%) |
99 (4.5%) |
380 (12%) |
295 (20%) |
61 (38%) |
15 (38%) |
2 (22%) |
|
| 8 |
0 (0%) |
0 (0%) |
0 (0%) |
2 (<0.1%) |
4 (0.3%) |
1 (0.6%) |
0 (0%) |
0 (0%) |
|
| any_pneum |
0.31 (0.66) |
0.60 (0.84) |
0.70 (0.93) |
0.88 (0.96) |
1.27 (1.01) |
1.59 (1.02) |
1.67 (0.98) |
1.44 (1.01) |
<0.001 |
| total_shingrix |
|
|
|
|
|
|
|
|
|
| 0 |
7,594 (98%) |
403 (93%) |
2,008 (91%) |
2,642 (84%) |
901 (61%) |
92 (57%) |
15 (38%) |
4 (44%) |
|
| 1 |
87 (1.1%) |
11 (2.5%) |
65 (2.9%) |
116 (3.7%) |
76 (5.1%) |
9 (5.6%) |
3 (7.7%) |
0 (0%) |
|
| 2 |
77 (1.0%) |
17 (3.9%) |
128 (5.8%) |
356 (11%) |
465 (31%) |
53 (33%) |
16 (41%) |
4 (44%) |
|
| 3 |
7 (<0.1%) |
3 (0.7%) |
5 (0.2%) |
24 (0.8%) |
42 (2.8%) |
6 (3.7%) |
3 (7.7%) |
1 (11%) |
|
| 4 |
1 (<0.1%) |
0 (0%) |
1 (<0.1%) |
1 (<0.1%) |
4 (0.3%) |
1 (0.6%) |
2 (5.1%) |
0 (0%) |
|
| 5 |
0 (0%) |
0 (0%) |
0 (0%) |
1 (<0.1%) |
1 (<0.1%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
Prelim Vax Models
Model 1: Flu 2021 + RPL_THEMES
Flu2021_SVI <- glm(flu_2021 ~ age_yrs + mstat_5 + race_5 + lang_3 + relig_affil
+ gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES,
family = "binomial",
data = vax_clean1)
summary(Flu2021_SVI )
Call:
glm(formula = flu_2021 ~ age_yrs + mstat_5 + race_5 + lang_3 +
relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES,
family = "binomial", data = vax_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.4060 -0.7430 -0.6046 -0.4186 3.1853
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.324e-01 1.314e-01 3.290 0.001003 **
age_yrs 2.567e-03 1.400e-03 1.833 0.066821 .
mstat_5unknown -1.400e-01 6.425e-02 -2.178 0.029380 *
mstat_5unmarried -3.650e-01 6.201e-02 -5.886 3.95e-09 ***
mstat_5div_sep -2.214e-01 1.338e-01 -1.655 0.097961 .
mstat_5widow -1.405e-01 1.554e-01 -0.904 0.366027
race_5BLACK OR AFRICAN AMERICAN -3.273e-01 1.058e-01 -3.095 0.001966 **
race_5Other -2.775e-01 1.469e-01 -1.888 0.058962 .
race_5ASIAN 4.138e-01 1.331e-01 3.108 0.001880 **
race_5AMERICAN INDIAN AND ALASKA NATIVE -2.373e-01 4.129e-01 -0.575 0.565395
lang_3Other -5.620e-01 2.636e-01 -2.132 0.032993 *
relig_affilno -8.817e-02 4.788e-02 -1.841 0.065560 .
genderfemale 1.722e-01 4.651e-02 3.702 0.000214 ***
ethnic_3HISPANIC 2.787e-01 1.655e-01 1.684 0.092259 .
pop_dens -4.114e-05 1.008e-05 -4.083 4.45e-05 ***
r_pct -2.624e-02 1.567e-03 -16.746 < 2e-16 ***
RPL_THEMES -1.321e+00 9.725e-02 -13.582 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 12367 on 11566 degrees of freedom
Residual deviance: 11745 on 11550 degrees of freedom
(3678 observations deleted due to missingness)
AIC: 11779
Number of Fisher Scoring iterations: 4
broom::glance(Flu2021_SVI )
broom::tidy(Flu2021_SVI , exponentiate = TRUE)
model_performance(Flu2021_SVI )
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
--------------------------------------------------------------------------------------------------
11779.314 | 11904.364 | 0.056 | 0.406 | 1.008 | 0.508 | -Inf | 1.219e-04 | 0.669
tbl_regression(Flu2021_SVI, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEMES ~ "Total SVI", mstat_5 ~ "Marital Status", pop_dens ~ "Population Density"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| Age |
1.00 |
1.00, 1.01 |
0.067 |
| Marital Status |
|
|
|
| married |
— |
— |
|
| unknown |
0.87 |
0.77, 0.99 |
0.029 |
| unmarried |
0.69 |
0.61, 0.78 |
<0.001 |
| div_sep |
0.80 |
0.61, 1.04 |
0.10 |
| widow |
0.87 |
0.64, 1.17 |
0.4 |
| Race |
|
|
|
| WHITE OR CAUCASIAN |
— |
— |
|
| BLACK OR AFRICAN AMERICAN |
0.72 |
0.58, 0.88 |
0.002 |
| Other |
0.76 |
0.56, 1.00 |
0.059 |
| ASIAN |
1.51 |
1.16, 1.96 |
0.002 |
| AMERICAN INDIAN AND ALASKA NATIVE |
0.79 |
0.33, 1.69 |
0.6 |
| English Speaking |
|
|
|
| English |
— |
— |
|
| Other |
0.57 |
0.33, 0.94 |
0.033 |
| Any Religious Affiliation |
|
|
|
| yes |
— |
— |
|
| no |
0.92 |
0.83, 1.01 |
0.066 |
| Gender |
|
|
|
| male |
— |
— |
|
| female |
1.19 |
1.08, 1.30 |
<0.001 |
| Ethnicity |
|
|
|
| NON-HISPANIC |
— |
— |
|
| HISPANIC |
1.32 |
0.95, 1.82 |
0.092 |
| Population Density |
1.00 |
1.00, 1.00 |
<0.001 |
| r_pct |
0.97 |
0.97, 0.98 |
<0.001 |
| Total SVI |
0.27 |
0.22, 0.32 |
<0.001 |
Model 2: Flu_2021 + RPL_THEMESx4
Flu2021_4 <- glm(flu_2021 ~ age_yrs + race_5 + mstat_5 + lang_3 + relig_affil
+ gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 + RPL_THEME4,
family = "binomial",
data = vax_clean1)
summary(Flu2021_4)
Call:
glm(formula = flu_2021 ~ age_yrs + race_5 + mstat_5 + lang_3 +
relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 +
RPL_THEME2 + RPL_THEME3 + RPL_THEME4, family = "binomial",
data = vax_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.3362 -0.7469 -0.5995 -0.4171 3.0713
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.056e-01 1.603e-01 2.531 0.011381 *
age_yrs 2.738e-03 1.407e-03 1.946 0.051617 .
race_5BLACK OR AFRICAN AMERICAN -2.728e-01 1.069e-01 -2.553 0.010693 *
race_5Other -2.947e-01 1.478e-01 -1.994 0.046156 *
race_5ASIAN 3.711e-01 1.344e-01 2.760 0.005778 **
race_5AMERICAN INDIAN AND ALASKA NATIVE -1.838e-01 4.155e-01 -0.442 0.658183
mstat_5unknown -1.307e-01 6.458e-02 -2.024 0.042973 *
mstat_5unmarried -3.560e-01 6.237e-02 -5.708 1.14e-08 ***
mstat_5div_sep -2.220e-01 1.347e-01 -1.648 0.099351 .
mstat_5widow -1.146e-01 1.556e-01 -0.737 0.461409
lang_3Other -5.755e-01 2.639e-01 -2.180 0.029235 *
relig_affilno -8.194e-02 4.823e-02 -1.699 0.089338 .
genderfemale 1.689e-01 4.676e-02 3.612 0.000303 ***
ethnic_3HISPANIC 2.844e-01 1.658e-01 1.715 0.086298 .
pop_dens -3.854e-05 1.034e-05 -3.729 0.000193 ***
r_pct -2.300e-02 1.862e-03 -12.351 < 2e-16 ***
RPL_THEME1 -7.685e-01 1.395e-01 -5.507 3.64e-08 ***
RPL_THEME2 -6.473e-01 1.212e-01 -5.340 9.31e-08 ***
RPL_THEME3 -6.151e-02 9.574e-02 -0.643 0.520529
RPL_THEME4 -1.842e-01 1.020e-01 -1.807 0.070837 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 12260 on 11496 degrees of freedom
Residual deviance: 11629 on 11477 degrees of freedom
(3748 observations deleted due to missingness)
AIC: 11669
Number of Fisher Scoring iterations: 4
broom::glance(Flu2021_4)
broom::tidy(Flu2021_4, exponentiate = TRUE)
model_performance(Flu2021_4)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
--------------------------------------------------------------------------------------------------
11669.325 | 11816.322 | 0.057 | 0.405 | 1.007 | 0.506 | -Inf | 1.203e-04 | 0.671
tbl_regression(Flu2021_4, label = list(age_yrs ~ "Age", race_5 ~ "Race", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", mstat_5 ~ "Marital Status", RPL_THEME4 ~ "Housing and Transportation", pop_dens ~ "Population Density"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| Age |
1.00 |
1.00, 1.01 |
0.052 |
| Race |
|
|
|
| WHITE OR CAUCASIAN |
— |
— |
|
| BLACK OR AFRICAN AMERICAN |
0.76 |
0.62, 0.94 |
0.011 |
| Other |
0.74 |
0.55, 0.99 |
0.046 |
| ASIAN |
1.45 |
1.11, 1.88 |
0.006 |
| AMERICAN INDIAN AND ALASKA NATIVE |
0.83 |
0.35, 1.80 |
0.7 |
| Marital Status |
|
|
|
| married |
— |
— |
|
| unknown |
0.88 |
0.77, 1.00 |
0.043 |
| unmarried |
0.70 |
0.62, 0.79 |
<0.001 |
| div_sep |
0.80 |
0.61, 1.04 |
0.10 |
| widow |
0.89 |
0.65, 1.20 |
0.5 |
| English Speaking |
|
|
|
| English |
— |
— |
|
| Other |
0.56 |
0.33, 0.92 |
0.029 |
| Any Religious Affiliation |
|
|
|
| yes |
— |
— |
|
| no |
0.92 |
0.84, 1.01 |
0.089 |
| Gender |
|
|
|
| male |
— |
— |
|
| female |
1.18 |
1.08, 1.30 |
<0.001 |
| Ethnicity |
|
|
|
| NON-HISPANIC |
— |
— |
|
| HISPANIC |
1.33 |
0.95, 1.83 |
0.086 |
| Population Density |
1.00 |
1.00, 1.00 |
<0.001 |
| r_pct |
0.98 |
0.97, 0.98 |
<0.001 |
| Soceioeconomic Status |
0.46 |
0.35, 0.61 |
<0.001 |
| Household Composition |
0.52 |
0.41, 0.66 |
<0.001 |
| Minority Status and Language |
0.94 |
0.78, 1.13 |
0.5 |
| Housing and Transportation |
0.83 |
0.68, 1.02 |
0.071 |
Model 3: Total Flu + RPL_THEMES
totalflu_SVI <- lm(total_flu ~ age_yrs + mstat_5 + race_5 + lang_3 + relig_affil
+ gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES, data = vax_clean1)
summary(totalflu_SVI)
Call:
lm(formula = total_flu ~ age_yrs + mstat_5 + race_5 + lang_3 +
relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES,
data = vax_clean1)
Residuals:
Min 1Q Median 3Q Max
-3.7902 -1.8605 -0.8196 1.7601 6.2768
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.226e+00 1.182e-01 35.750 < 2e-16 ***
age_yrs -6.299e-03 1.294e-03 -4.869 1.13e-06 ***
mstat_5unknown -5.278e-01 5.989e-02 -8.813 < 2e-16 ***
mstat_5unmarried -3.322e-01 5.695e-02 -5.833 5.59e-09 ***
mstat_5div_sep -3.101e-01 1.199e-01 -2.585 0.009741 **
mstat_5widow -2.977e-01 1.505e-01 -1.978 0.047954 *
race_5BLACK OR AFRICAN AMERICAN -3.626e-01 9.428e-02 -3.846 0.000121 ***
race_5Other -3.144e-01 1.304e-01 -2.410 0.015967 *
race_5ASIAN 3.350e-01 1.418e-01 2.363 0.018131 *
race_5AMERICAN INDIAN AND ALASKA NATIVE 2.004e-01 3.662e-01 0.547 0.584296
lang_3Other -6.062e-01 2.232e-01 -2.715 0.006632 **
relig_affilno -1.856e-01 4.405e-02 -4.212 2.55e-05 ***
genderfemale 1.592e-01 4.288e-02 3.713 0.000206 ***
ethnic_3HISPANIC 3.271e-01 1.584e-01 2.064 0.038994 *
pop_dens -2.767e-05 5.625e-06 -4.919 8.82e-07 ***
r_pct -2.224e-02 1.373e-03 -16.194 < 2e-16 ***
RPL_THEMES -1.333e+00 8.491e-02 -15.704 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.279 on 11550 degrees of freedom
(3678 observations deleted due to missingness)
Multiple R-squared: 0.05746, Adjusted R-squared: 0.05615
F-statistic: 44.01 on 16 and 11550 DF, p-value: < 2.2e-16
broom::glance(totalflu_SVI)
broom::tidy(totalflu_SVI, exponentiate = TRUE)
model_performance(totalflu_SVI)
# Indices of model performance
AIC | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------
51903.558 | 52035.964 | 0.057 | 0.056 | 2.278 | 2.279
tbl_regression(totalflu_SVI, label = list(age_yrs ~ "Age", pop_dens ~ "Population density", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEMES ~ "Total SVI", mstat_5 ~ "Marital Status"))
| Characteristic |
Beta |
95% CI |
p-value |
| Age |
-0.01 |
-0.01, 0.00 |
<0.001 |
| Marital Status |
|
|
|
| married |
— |
— |
|
| unknown |
-0.53 |
-0.65, -0.41 |
<0.001 |
| unmarried |
-0.33 |
-0.44, -0.22 |
<0.001 |
| div_sep |
-0.31 |
-0.55, -0.07 |
0.010 |
| widow |
-0.30 |
-0.59, 0.00 |
0.048 |
| race_5 |
|
|
|
| WHITE OR CAUCASIAN |
— |
— |
|
| BLACK OR AFRICAN AMERICAN |
-0.36 |
-0.55, -0.18 |
<0.001 |
| Other |
-0.31 |
-0.57, -0.06 |
0.016 |
| ASIAN |
0.34 |
0.06, 0.61 |
0.018 |
| AMERICAN INDIAN AND ALASKA NATIVE |
0.20 |
-0.52, 0.92 |
0.6 |
| English Speaking |
|
|
|
| English |
— |
— |
|
| Other |
-0.61 |
-1.0, -0.17 |
0.007 |
| Any Religious Affiliation |
|
|
|
| yes |
— |
— |
|
| no |
-0.19 |
-0.27, -0.10 |
<0.001 |
| Gender |
|
|
|
| male |
— |
— |
|
| female |
0.16 |
0.08, 0.24 |
<0.001 |
| Ethnicity |
|
|
|
| NON-HISPANIC |
— |
— |
|
| HISPANIC |
0.33 |
0.02, 0.64 |
0.039 |
| Population density |
0.00 |
0.00, 0.00 |
<0.001 |
| r_pct |
-0.02 |
-0.02, -0.02 |
<0.001 |
| Total SVI |
-1.3 |
-1.5, -1.2 |
<0.001 |
Model 4: Total Flu + RPL_THEMESx4
totalflu_4 <- lm(total_flu ~ age_yrs + mstat_5 + race_5 + lang_3 + relig_affil
+ gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 + RPL_THEME4, data = vax_clean1)
summary(totalflu_4)
Call:
lm(formula = total_flu ~ age_yrs + mstat_5 + race_5 + lang_3 +
relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 +
RPL_THEME2 + RPL_THEME3 + RPL_THEME4, data = vax_clean1)
Residuals:
Min 1Q Median 3Q Max
-3.7702 -1.8459 -0.8139 1.7477 6.2936
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.191e+00 1.434e-01 29.215 < 2e-16 ***
age_yrs -6.070e-03 1.296e-03 -4.685 2.83e-06 ***
mstat_5unknown -5.114e-01 5.995e-02 -8.530 < 2e-16 ***
mstat_5unmarried -3.219e-01 5.706e-02 -5.641 1.73e-08 ***
mstat_5div_sep -2.953e-01 1.199e-01 -2.463 0.013808 *
mstat_5widow -2.688e-01 1.508e-01 -1.782 0.074754 .
race_5BLACK OR AFRICAN AMERICAN -3.036e-01 9.524e-02 -3.187 0.001441 **
race_5Other -3.238e-01 1.307e-01 -2.478 0.013232 *
race_5ASIAN 3.028e-01 1.429e-01 2.119 0.034136 *
race_5AMERICAN INDIAN AND ALASKA NATIVE 2.816e-01 3.703e-01 0.760 0.447125
lang_3Other -6.082e-01 2.242e-01 -2.712 0.006689 **
relig_affilno -1.790e-01 4.418e-02 -4.053 5.09e-05 ***
genderfemale 1.558e-01 4.293e-02 3.629 0.000286 ***
ethnic_3HISPANIC 3.345e-01 1.586e-01 2.109 0.034956 *
pop_dens -2.577e-05 5.696e-06 -4.525 6.10e-06 ***
r_pct -1.907e-02 1.635e-03 -11.661 < 2e-16 ***
RPL_THEME1 -8.527e-01 1.242e-01 -6.864 7.05e-12 ***
RPL_THEME2 -5.598e-01 1.089e-01 -5.143 2.76e-07 ***
RPL_THEME3 -6.353e-02 8.918e-02 -0.712 0.476246
RPL_THEME4 -1.816e-01 9.248e-02 -1.964 0.049542 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.275 on 11477 degrees of freedom
(3748 observations deleted due to missingness)
Multiple R-squared: 0.05859, Adjusted R-squared: 0.05703
F-statistic: 37.59 on 19 and 11477 DF, p-value: < 2.2e-16
broom::glance(totalflu_4)
broom::tidy(totalflu_4, exponentiate = TRUE)
model_performance(totalflu_4)
# Indices of model performance
AIC | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------
51549.376 | 51703.723 | 0.059 | 0.057 | 2.273 | 2.275
tbl_regression(totalflu_4, label = list(age_yrs ~ "Age", pop_dens ~ "Population density", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", mstat_5 ~ "Marital Status", RPL_THEME4 ~ "Housing and Transportation", mstat_5 ~ "Marital Status"))
| Characteristic |
Beta |
95% CI |
p-value |
| Age |
-0.01 |
-0.01, 0.00 |
<0.001 |
| Marital Status |
|
|
|
| married |
— |
— |
|
| unknown |
-0.51 |
-0.63, -0.39 |
<0.001 |
| unmarried |
-0.32 |
-0.43, -0.21 |
<0.001 |
| div_sep |
-0.30 |
-0.53, -0.06 |
0.014 |
| widow |
-0.27 |
-0.56, 0.03 |
0.075 |
| race_5 |
|
|
|
| WHITE OR CAUCASIAN |
— |
— |
|
| BLACK OR AFRICAN AMERICAN |
-0.30 |
-0.49, -0.12 |
0.001 |
| Other |
-0.32 |
-0.58, -0.07 |
0.013 |
| ASIAN |
0.30 |
0.02, 0.58 |
0.034 |
| AMERICAN INDIAN AND ALASKA NATIVE |
0.28 |
-0.44, 1.0 |
0.4 |
| English Speaking |
|
|
|
| English |
— |
— |
|
| Other |
-0.61 |
-1.0, -0.17 |
0.007 |
| Any Religious Affiliation |
|
|
|
| yes |
— |
— |
|
| no |
-0.18 |
-0.27, -0.09 |
<0.001 |
| Gender |
|
|
|
| male |
— |
— |
|
| female |
0.16 |
0.07, 0.24 |
<0.001 |
| Ethnicity |
|
|
|
| NON-HISPANIC |
— |
— |
|
| HISPANIC |
0.33 |
0.02, 0.65 |
0.035 |
| Population density |
0.00 |
0.00, 0.00 |
<0.001 |
| r_pct |
-0.02 |
-0.02, -0.02 |
<0.001 |
| Soceioeconomic Status |
-0.85 |
-1.1, -0.61 |
<0.001 |
| Household Composition |
-0.56 |
-0.77, -0.35 |
<0.001 |
| Minority Status and Language |
-0.06 |
-0.24, 0.11 |
0.5 |
| Housing and Transportation |
-0.18 |
-0.36, 0.00 |
0.050 |
Model 5: Total COVID + RPL_THEMES
totalcov_SVI <- lm(total_cov_vax ~ age_yrs + mstat_5 + race_5 + lang_3 + relig_affil
+ gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES, data = vax_clean1)
summary(totalcov_SVI)
Call:
lm(formula = total_cov_vax ~ age_yrs + mstat_5 + race_5 + lang_3 +
relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES,
data = vax_clean1)
Residuals:
Min 1Q Median 3Q Max
-2.7849 -1.3433 -0.3826 1.3461 5.9971
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.395e+00 7.867e-02 30.447 < 2e-16 ***
age_yrs 7.865e-03 8.608e-04 9.137 < 2e-16 ***
mstat_5unknown 9.908e-02 3.985e-02 2.486 0.012920 *
mstat_5unmarried -2.015e-01 3.790e-02 -5.318 1.07e-07 ***
mstat_5div_sep -2.086e-01 7.981e-02 -2.614 0.008962 **
mstat_5widow -3.484e-01 1.002e-01 -3.479 0.000506 ***
race_5BLACK OR AFRICAN AMERICAN -1.823e-01 6.274e-02 -2.906 0.003667 **
race_5Other -1.078e-01 8.680e-02 -1.242 0.214408
race_5ASIAN 3.855e-01 9.433e-02 4.086 4.41e-05 ***
race_5AMERICAN INDIAN AND ALASKA NATIVE -2.358e-01 2.437e-01 -0.968 0.333200
lang_3Other -3.219e-01 1.485e-01 -2.167 0.030256 *
relig_affilno -2.536e-02 2.931e-02 -0.865 0.386999
genderfemale 6.411e-02 2.853e-02 2.247 0.024673 *
ethnic_3HISPANIC 1.965e-01 1.054e-01 1.864 0.062373 .
pop_dens -2.160e-05 3.743e-06 -5.772 8.05e-09 ***
r_pct -1.922e-02 9.137e-04 -21.036 < 2e-16 ***
RPL_THEMES -9.924e-01 5.650e-02 -17.565 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.517 on 11550 degrees of freedom
(3678 observations deleted due to missingness)
Multiple R-squared: 0.0799, Adjusted R-squared: 0.07862
F-statistic: 62.68 on 16 and 11550 DF, p-value: < 2.2e-16
broom::glance(totalcov_SVI)
broom::tidy(totalcov_SVI, exponentiate = TRUE)
model_performance(totalcov_SVI)
# Indices of model performance
AIC | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------
42480.231 | 42612.637 | 0.080 | 0.079 | 1.516 | 1.517
tbl_regression(totalcov_SVI, label = list(age_yrs ~ "Age", pop_dens ~ "Population density", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEMES ~ "Total SVI", mstat_5 ~ "Marital Status"))
| Characteristic |
Beta |
95% CI |
p-value |
| Age |
0.01 |
0.01, 0.01 |
<0.001 |
| Marital Status |
|
|
|
| married |
— |
— |
|
| unknown |
0.10 |
0.02, 0.18 |
0.013 |
| unmarried |
-0.20 |
-0.28, -0.13 |
<0.001 |
| div_sep |
-0.21 |
-0.37, -0.05 |
0.009 |
| widow |
-0.35 |
-0.54, -0.15 |
<0.001 |
| race_5 |
|
|
|
| WHITE OR CAUCASIAN |
— |
— |
|
| BLACK OR AFRICAN AMERICAN |
-0.18 |
-0.31, -0.06 |
0.004 |
| Other |
-0.11 |
-0.28, 0.06 |
0.2 |
| ASIAN |
0.39 |
0.20, 0.57 |
<0.001 |
| AMERICAN INDIAN AND ALASKA NATIVE |
-0.24 |
-0.71, 0.24 |
0.3 |
| English Speaking |
|
|
|
| English |
— |
— |
|
| Other |
-0.32 |
-0.61, -0.03 |
0.030 |
| Any Religious Affiliation |
|
|
|
| yes |
— |
— |
|
| no |
-0.03 |
-0.08, 0.03 |
0.4 |
| Gender |
|
|
|
| male |
— |
— |
|
| female |
0.06 |
0.01, 0.12 |
0.025 |
| Ethnicity |
|
|
|
| NON-HISPANIC |
— |
— |
|
| HISPANIC |
0.20 |
-0.01, 0.40 |
0.062 |
| Population density |
0.00 |
0.00, 0.00 |
<0.001 |
| r_pct |
-0.02 |
-0.02, -0.02 |
<0.001 |
| Total SVI |
-0.99 |
-1.1, -0.88 |
<0.001 |
Model 6: Total COVID + RPL_THEMESx4
totalcov_4 <- lm(total_cov_vax ~ age_yrs + mstat_5 + race_5 + lang_3 + relig_affil
+ gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 + RPL_THEME4, data = vax_clean1)
summary(totalcov_4)
Call:
lm(formula = total_cov_vax ~ age_yrs + mstat_5 + race_5 + lang_3 +
relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 +
RPL_THEME2 + RPL_THEME3 + RPL_THEME4, data = vax_clean1)
Residuals:
Min 1Q Median 3Q Max
-2.7200 -1.3354 -0.4144 1.3286 5.9428
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.341e+00 9.545e-02 24.525 < 2e-16 ***
age_yrs 7.956e-03 8.620e-04 9.229 < 2e-16 ***
mstat_5unknown 1.064e-01 3.989e-02 2.667 0.007667 **
mstat_5unmarried -1.943e-01 3.797e-02 -5.118 3.14e-07 ***
mstat_5div_sep -2.010e-01 7.979e-02 -2.519 0.011793 *
mstat_5widow -3.247e-01 1.003e-01 -3.235 0.001218 **
race_5BLACK OR AFRICAN AMERICAN -1.364e-01 6.337e-02 -2.153 0.031370 *
race_5Other -1.143e-01 8.695e-02 -1.315 0.188628
race_5ASIAN 3.420e-01 9.510e-02 3.596 0.000324 ***
race_5AMERICAN INDIAN AND ALASKA NATIVE -1.722e-01 2.464e-01 -0.699 0.484776
lang_3Other -3.459e-01 1.492e-01 -2.319 0.020433 *
relig_affilno -2.276e-02 2.939e-02 -0.774 0.438867
genderfemale 6.099e-02 2.857e-02 2.135 0.032760 *
ethnic_3HISPANIC 1.946e-01 1.055e-01 1.844 0.065215 .
pop_dens -1.952e-05 3.790e-06 -5.151 2.64e-07 ***
r_pct -1.660e-02 1.088e-03 -15.260 < 2e-16 ***
RPL_THEME1 -7.149e-01 8.266e-02 -8.649 < 2e-16 ***
RPL_THEME2 -3.517e-01 7.244e-02 -4.855 1.22e-06 ***
RPL_THEME3 1.960e-03 5.934e-02 0.033 0.973651
RPL_THEME4 -1.332e-01 6.154e-02 -2.164 0.030503 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.514 on 11477 degrees of freedom
(3748 observations deleted due to missingness)
Multiple R-squared: 0.08197, Adjusted R-squared: 0.08045
F-statistic: 53.94 on 19 and 11477 DF, p-value: < 2.2e-16
broom::glance(totalcov_4)
broom::tidy(totalcov_4, exponentiate = TRUE)
model_performance(totalcov_4)
# Indices of model performance
AIC | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------
42182.135 | 42336.482 | 0.082 | 0.080 | 1.512 | 1.514
tbl_regression(totalcov_4, label = list(age_yrs ~ "Age", pop_dens ~ "Population density", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", mstat_5 ~ "Marital Status", RPL_THEME4 ~ "Housing and Transportation", mstat_5 ~ "Marital Status"))
| Characteristic |
Beta |
95% CI |
p-value |
| Age |
0.01 |
0.01, 0.01 |
<0.001 |
| Marital Status |
|
|
|
| married |
— |
— |
|
| unknown |
0.11 |
0.03, 0.18 |
0.008 |
| unmarried |
-0.19 |
-0.27, -0.12 |
<0.001 |
| div_sep |
-0.20 |
-0.36, -0.04 |
0.012 |
| widow |
-0.32 |
-0.52, -0.13 |
0.001 |
| race_5 |
|
|
|
| WHITE OR CAUCASIAN |
— |
— |
|
| BLACK OR AFRICAN AMERICAN |
-0.14 |
-0.26, -0.01 |
0.031 |
| Other |
-0.11 |
-0.28, 0.06 |
0.2 |
| ASIAN |
0.34 |
0.16, 0.53 |
<0.001 |
| AMERICAN INDIAN AND ALASKA NATIVE |
-0.17 |
-0.66, 0.31 |
0.5 |
| English Speaking |
|
|
|
| English |
— |
— |
|
| Other |
-0.35 |
-0.64, -0.05 |
0.020 |
| Any Religious Affiliation |
|
|
|
| yes |
— |
— |
|
| no |
-0.02 |
-0.08, 0.03 |
0.4 |
| Gender |
|
|
|
| male |
— |
— |
|
| female |
0.06 |
0.01, 0.12 |
0.033 |
| Ethnicity |
|
|
|
| NON-HISPANIC |
— |
— |
|
| HISPANIC |
0.19 |
-0.01, 0.40 |
0.065 |
| Population density |
0.00 |
0.00, 0.00 |
<0.001 |
| r_pct |
-0.02 |
-0.02, -0.01 |
<0.001 |
| Soceioeconomic Status |
-0.71 |
-0.88, -0.55 |
<0.001 |
| Household Composition |
-0.35 |
-0.49, -0.21 |
<0.001 |
| Minority Status and Language |
0.00 |
-0.11, 0.12 |
>0.9 |
| Housing and Transportation |
-0.13 |
-0.25, -0.01 |
0.031 |
Model 7: Any pneum + RPL_THEMES
any_pneum_SVI <- lm(any_pneum ~ age_yrs + mstat_5 + race_5 + lang_3 + relig_affil
+ gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES, data = vax_clean1)
summary(any_pneum_SVI)
Call:
lm(formula = any_pneum ~ age_yrs + mstat_5 + race_5 + lang_3 +
relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES,
data = vax_clean1)
Residuals:
Min 1Q Median 3Q Max
-1.0482 -0.6433 -0.5122 0.4341 8.3621
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.565e-01 4.648e-02 18.426 < 2e-16 ***
age_yrs 2.806e-03 5.086e-04 5.517 3.52e-08 ***
mstat_5unknown -7.952e-02 2.355e-02 -3.377 0.000734 ***
mstat_5unmarried -3.995e-02 2.239e-02 -1.784 0.074418 .
mstat_5div_sep -3.674e-02 4.716e-02 -0.779 0.435979
mstat_5widow -4.199e-02 5.918e-02 -0.710 0.477936
race_5BLACK OR AFRICAN AMERICAN -6.742e-02 3.707e-02 -1.819 0.068981 .
race_5Other -6.571e-02 5.129e-02 -1.281 0.200160
race_5ASIAN 1.133e-02 5.574e-02 0.203 0.838974
race_5AMERICAN INDIAN AND ALASKA NATIVE 8.304e-02 1.440e-01 0.577 0.564118
lang_3Other -4.564e-02 8.777e-02 -0.520 0.603102
relig_affilno -2.682e-02 1.732e-02 -1.549 0.121526
genderfemale -6.215e-02 1.686e-02 -3.686 0.000229 ***
ethnic_3HISPANIC 5.187e-02 6.229e-02 0.833 0.404995
pop_dens -5.140e-06 2.212e-06 -2.324 0.020146 *
r_pct -4.251e-03 5.399e-04 -7.873 3.76e-15 ***
RPL_THEMES -2.088e-01 3.338e-02 -6.256 4.10e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.8961 on 11550 degrees of freedom
(3678 observations deleted due to missingness)
Multiple R-squared: 0.01667, Adjusted R-squared: 0.01531
F-statistic: 12.24 on 16 and 11550 DF, p-value: < 2.2e-16
broom::glance(any_pneum_SVI)
broom::tidy(any_pneum_SVI, exponentiate = TRUE)
model_performance(any_pneum_SVI)
# Indices of model performance
AIC | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------
30307.227 | 30439.633 | 0.017 | 0.015 | 0.895 | 0.896
tbl_regression(any_pneum_SVI, label = list(age_yrs ~ "Age", pop_dens ~ "Population density", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEMES ~ "Total SVI", mstat_5 ~ "Marital Status"))
| Characteristic |
Beta |
95% CI |
p-value |
| Age |
0.00 |
0.00, 0.00 |
<0.001 |
| Marital Status |
|
|
|
| married |
— |
— |
|
| unknown |
-0.08 |
-0.13, -0.03 |
<0.001 |
| unmarried |
-0.04 |
-0.08, 0.00 |
0.074 |
| div_sep |
-0.04 |
-0.13, 0.06 |
0.4 |
| widow |
-0.04 |
-0.16, 0.07 |
0.5 |
| race_5 |
|
|
|
| WHITE OR CAUCASIAN |
— |
— |
|
| BLACK OR AFRICAN AMERICAN |
-0.07 |
-0.14, 0.01 |
0.069 |
| Other |
-0.07 |
-0.17, 0.03 |
0.2 |
| ASIAN |
0.01 |
-0.10, 0.12 |
0.8 |
| AMERICAN INDIAN AND ALASKA NATIVE |
0.08 |
-0.20, 0.37 |
0.6 |
| English Speaking |
|
|
|
| English |
— |
— |
|
| Other |
-0.05 |
-0.22, 0.13 |
0.6 |
| Any Religious Affiliation |
|
|
|
| yes |
— |
— |
|
| no |
-0.03 |
-0.06, 0.01 |
0.12 |
| Gender |
|
|
|
| male |
— |
— |
|
| female |
-0.06 |
-0.10, -0.03 |
<0.001 |
| Ethnicity |
|
|
|
| NON-HISPANIC |
— |
— |
|
| HISPANIC |
0.05 |
-0.07, 0.17 |
0.4 |
| Population density |
0.00 |
0.00, 0.00 |
0.020 |
| r_pct |
0.00 |
-0.01, 0.00 |
<0.001 |
| Total SVI |
-0.21 |
-0.27, -0.14 |
<0.001 |
Model 8: Any pneumo + RPL_THEMESx4
any_pneum_4 <- lm(any_pneum ~ age_yrs + mstat_5 + race_5 + lang_3 + relig_affil
+ gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 + RPL_THEME4, data = vax_clean1)
summary(any_pneum_4)
Call:
lm(formula = any_pneum ~ age_yrs + mstat_5 + race_5 + lang_3 +
relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 +
RPL_THEME2 + RPL_THEME3 + RPL_THEME4, data = vax_clean1)
Residuals:
Min 1Q Median 3Q Max
-1.0106 -0.6439 -0.5091 0.4362 8.4083
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.646e-01 5.651e-02 15.301 < 2e-16 ***
age_yrs 2.794e-03 5.104e-04 5.474 4.49e-08 ***
mstat_5unknown -7.893e-02 2.362e-02 -3.342 0.000835 ***
mstat_5unmarried -4.224e-02 2.248e-02 -1.879 0.060244 .
mstat_5div_sep -3.957e-02 4.724e-02 -0.838 0.402246
mstat_5widow -3.536e-02 5.941e-02 -0.595 0.551701
race_5BLACK OR AFRICAN AMERICAN -5.927e-02 3.752e-02 -1.580 0.114207
race_5Other -6.544e-02 5.148e-02 -1.271 0.203701
race_5ASIAN -9.381e-04 5.630e-02 -0.017 0.986707
race_5AMERICAN INDIAN AND ALASKA NATIVE 1.040e-01 1.459e-01 0.713 0.475788
lang_3Other -6.830e-02 8.833e-02 -0.773 0.439400
relig_affilno -2.542e-02 1.740e-02 -1.461 0.144151
genderfemale -6.326e-02 1.691e-02 -3.741 0.000185 ***
ethnic_3HISPANIC 4.998e-02 6.248e-02 0.800 0.423751
pop_dens -5.515e-06 2.244e-06 -2.458 0.014000 *
r_pct -3.736e-03 6.442e-04 -5.799 6.83e-09 ***
RPL_THEME1 -7.921e-02 4.894e-02 -1.619 0.105569
RPL_THEME2 -1.499e-01 4.289e-02 -3.494 0.000477 ***
RPL_THEME3 -1.176e-02 3.513e-02 -0.335 0.737906
RPL_THEME4 -3.125e-02 3.643e-02 -0.858 0.391067
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.8962 on 11477 degrees of freedom
(3748 observations deleted due to missingness)
Multiple R-squared: 0.01741, Adjusted R-squared: 0.01578
F-statistic: 10.7 on 19 and 11477 DF, p-value: < 2.2e-16
broom::glance(any_pneum_4)
broom::tidy(any_pneum_4, exponentiate = TRUE)
model_performance(any_pneum_4)
# Indices of model performance
AIC | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------
30128.890 | 30283.237 | 0.017 | 0.016 | 0.895 | 0.896
tbl_regression(any_pneum_4, label = list(age_yrs ~ "Age", pop_dens ~ "Population density", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", mstat_5 ~ "Marital Status", RPL_THEME4 ~ "Housing and Transportation", mstat_5 ~ "Marital Status"))
| Characteristic |
Beta |
95% CI |
p-value |
| Age |
0.00 |
0.00, 0.00 |
<0.001 |
| Marital Status |
|
|
|
| married |
— |
— |
|
| unknown |
-0.08 |
-0.13, -0.03 |
<0.001 |
| unmarried |
-0.04 |
-0.09, 0.00 |
0.060 |
| div_sep |
-0.04 |
-0.13, 0.05 |
0.4 |
| widow |
-0.04 |
-0.15, 0.08 |
0.6 |
| race_5 |
|
|
|
| WHITE OR CAUCASIAN |
— |
— |
|
| BLACK OR AFRICAN AMERICAN |
-0.06 |
-0.13, 0.01 |
0.11 |
| Other |
-0.07 |
-0.17, 0.04 |
0.2 |
| ASIAN |
0.00 |
-0.11, 0.11 |
>0.9 |
| AMERICAN INDIAN AND ALASKA NATIVE |
0.10 |
-0.18, 0.39 |
0.5 |
| English Speaking |
|
|
|
| English |
— |
— |
|
| Other |
-0.07 |
-0.24, 0.10 |
0.4 |
| Any Religious Affiliation |
|
|
|
| yes |
— |
— |
|
| no |
-0.03 |
-0.06, 0.01 |
0.14 |
| Gender |
|
|
|
| male |
— |
— |
|
| female |
-0.06 |
-0.10, -0.03 |
<0.001 |
| Ethnicity |
|
|
|
| NON-HISPANIC |
— |
— |
|
| HISPANIC |
0.05 |
-0.07, 0.17 |
0.4 |
| Population density |
0.00 |
0.00, 0.00 |
0.014 |
| r_pct |
0.00 |
0.00, 0.00 |
<0.001 |
| Soceioeconomic Status |
-0.08 |
-0.18, 0.02 |
0.11 |
| Household Composition |
-0.15 |
-0.23, -0.07 |
<0.001 |
| Minority Status and Language |
-0.01 |
-0.08, 0.06 |
0.7 |
| Housing and Transportation |
-0.03 |
-0.10, 0.04 |
0.4 |
Model 9: Shingrix + RPL_THEMES
vax_clean1 %>%
mutate(age_2 = case_when(
age_yrs<49.99 ~ 0,
TRUE ~ 1)) -> vax_clean2
Shingrix_SVI <- lm(total_shingrix ~ age_2 + mstat_5 + race_5 + lang_3 + relig_affil
+ gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES, data = vax_clean2)
summary(Shingrix_SVI)
Call:
lm(formula = total_shingrix ~ age_2 + mstat_5 + race_5 + lang_3 +
relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEMES,
data = vax_clean2)
Residuals:
Min 1Q Median 3Q Max
-0.6635 -0.3450 -0.0885 0.0404 4.5285
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.208e-01 2.352e-02 13.640 < 2e-16 ***
age_2 3.681e-01 1.182e-02 31.143 < 2e-16 ***
mstat_5unknown -3.288e-02 1.458e-02 -2.255 0.024161 *
mstat_5unmarried -5.017e-02 1.350e-02 -3.715 0.000204 ***
mstat_5div_sep -6.495e-02 2.968e-02 -2.188 0.028682 *
mstat_5widow -6.246e-02 3.686e-02 -1.695 0.090197 .
race_5BLACK OR AFRICAN AMERICAN -6.082e-02 2.333e-02 -2.607 0.009139 **
race_5Other -3.630e-02 3.228e-02 -1.125 0.260714
race_5ASIAN 6.670e-02 3.504e-02 1.903 0.057016 .
race_5AMERICAN INDIAN AND ALASKA NATIVE -1.869e-03 9.062e-02 -0.021 0.983543
lang_3Other -9.554e-02 5.524e-02 -1.730 0.083703 .
relig_affilno -6.335e-03 1.091e-02 -0.581 0.561376
genderfemale 9.225e-03 1.061e-02 0.869 0.384619
ethnic_3HISPANIC 4.975e-02 3.918e-02 1.270 0.204252
pop_dens -2.569e-06 1.391e-06 -1.846 0.064887 .
r_pct -4.122e-03 3.399e-04 -12.128 < 2e-16 ***
RPL_THEMES -2.279e-01 2.099e-02 -10.858 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.564 on 11550 degrees of freedom
(3678 observations deleted due to missingness)
Multiple R-squared: 0.1205, Adjusted R-squared: 0.1193
F-statistic: 98.92 on 16 and 11550 DF, p-value: < 2.2e-16
broom::glance(Shingrix_SVI)
broom::tidy(Shingrix_SVI, exponentiate = TRUE)
model_performance(Shingrix_SVI)
# Indices of model performance
AIC | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------
19594.799 | 19727.205 | 0.121 | 0.119 | 0.564 | 0.564
tbl_regression(Shingrix_SVI, label = list(age_2 ~ "Age > 50", pop_dens ~ "Population density", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEMES ~ "Total SVI", mstat_5 ~ "Marital Status"))
| Characteristic |
Beta |
95% CI |
p-value |
| Age > 50 |
0.37 |
0.34, 0.39 |
<0.001 |
| Marital Status |
|
|
|
| married |
— |
— |
|
| unknown |
-0.03 |
-0.06, 0.00 |
0.024 |
| unmarried |
-0.05 |
-0.08, -0.02 |
<0.001 |
| div_sep |
-0.06 |
-0.12, -0.01 |
0.029 |
| widow |
-0.06 |
-0.13, 0.01 |
0.090 |
| race_5 |
|
|
|
| WHITE OR CAUCASIAN |
— |
— |
|
| BLACK OR AFRICAN AMERICAN |
-0.06 |
-0.11, -0.02 |
0.009 |
| Other |
-0.04 |
-0.10, 0.03 |
0.3 |
| ASIAN |
0.07 |
0.00, 0.14 |
0.057 |
| AMERICAN INDIAN AND ALASKA NATIVE |
0.00 |
-0.18, 0.18 |
>0.9 |
| English Speaking |
|
|
|
| English |
— |
— |
|
| Other |
-0.10 |
-0.20, 0.01 |
0.084 |
| Any Religious Affiliation |
|
|
|
| yes |
— |
— |
|
| no |
-0.01 |
-0.03, 0.02 |
0.6 |
| Gender |
|
|
|
| male |
— |
— |
|
| female |
0.01 |
-0.01, 0.03 |
0.4 |
| Ethnicity |
|
|
|
| NON-HISPANIC |
— |
— |
|
| HISPANIC |
0.05 |
-0.03, 0.13 |
0.2 |
| Population density |
0.00 |
0.00, 0.00 |
0.065 |
| r_pct |
0.00 |
0.00, 0.00 |
<0.001 |
| Total SVI |
-0.23 |
-0.27, -0.19 |
<0.001 |
Model 10: Shingrix + RPL_THEMESx4
total_shingrix_4 <- lm(total_shingrix ~ age_2 + mstat_5 + race_5 + lang_3 + relig_affil
+ gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 + RPL_THEME4, data = vax_clean2)
summary(total_shingrix_4)
Call:
lm(formula = total_shingrix ~ age_2 + mstat_5 + race_5 + lang_3 +
relig_affil + gender + ethnic_3 + pop_dens + r_pct + RPL_THEME1 +
RPL_THEME2 + RPL_THEME3 + RPL_THEME4, data = vax_clean2)
Residuals:
Min 1Q Median 3Q Max
-0.6572 -0.3381 -0.0930 0.0421 4.5538
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.147e-01 3.073e-02 10.239 < 2e-16 ***
age_2 3.658e-01 1.182e-02 30.940 < 2e-16 ***
mstat_5unknown -3.281e-02 1.458e-02 -2.251 0.024424 *
mstat_5unmarried -5.023e-02 1.351e-02 -3.718 0.000202 ***
mstat_5div_sep -6.614e-02 2.963e-02 -2.232 0.025628 *
mstat_5widow -5.581e-02 3.688e-02 -1.513 0.130257
race_5BLACK OR AFRICAN AMERICAN -5.013e-02 2.353e-02 -2.131 0.033142 *
race_5Other -3.617e-02 3.228e-02 -1.120 0.262607
race_5ASIAN 5.905e-02 3.528e-02 1.674 0.094204 .
race_5AMERICAN INDIAN AND ALASKA NATIVE 1.562e-02 9.150e-02 0.171 0.864450
lang_3Other -9.170e-02 5.540e-02 -1.655 0.097883 .
relig_affilno -4.957e-03 1.092e-02 -0.454 0.649923
genderfemale 7.349e-03 1.061e-02 0.693 0.488393
ethnic_3HISPANIC 4.975e-02 3.917e-02 1.270 0.204014
pop_dens -2.052e-06 1.407e-06 -1.458 0.144740
r_pct -3.593e-03 4.039e-04 -8.896 < 2e-16 ***
RPL_THEME1 -1.712e-01 3.069e-02 -5.577 2.51e-08 ***
RPL_THEME2 -6.480e-02 2.689e-02 -2.410 0.015982 *
RPL_THEME3 -2.983e-03 2.203e-02 -0.135 0.892308
RPL_THEME4 -3.573e-02 2.285e-02 -1.564 0.117873
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.5621 on 11477 degrees of freedom
(3748 observations deleted due to missingness)
Multiple R-squared: 0.1205, Adjusted R-squared: 0.119
F-statistic: 82.73 on 19 and 11477 DF, p-value: < 2.2e-16
broom::glance(total_shingrix_4)
broom::tidy(total_shingrix_4, exponentiate = TRUE)
model_performance(total_shingrix_4)
# Indices of model performance
AIC | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------
19401.044 | 19555.391 | 0.120 | 0.119 | 0.562 | 0.562
tbl_regression(total_shingrix_4, label = list(age_2 ~ "Age > 50", pop_dens ~ "Population density", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", mstat_5 ~ "Marital Status", RPL_THEME4 ~ "Housing and Transportation", mstat_5 ~ "Marital Status"))
| Characteristic |
Beta |
95% CI |
p-value |
| Age > 50 |
0.37 |
0.34, 0.39 |
<0.001 |
| Marital Status |
|
|
|
| married |
— |
— |
|
| unknown |
-0.03 |
-0.06, 0.00 |
0.024 |
| unmarried |
-0.05 |
-0.08, -0.02 |
<0.001 |
| div_sep |
-0.07 |
-0.12, -0.01 |
0.026 |
| widow |
-0.06 |
-0.13, 0.02 |
0.13 |
| race_5 |
|
|
|
| WHITE OR CAUCASIAN |
— |
— |
|
| BLACK OR AFRICAN AMERICAN |
-0.05 |
-0.10, 0.00 |
0.033 |
| Other |
-0.04 |
-0.10, 0.03 |
0.3 |
| ASIAN |
0.06 |
-0.01, 0.13 |
0.094 |
| AMERICAN INDIAN AND ALASKA NATIVE |
0.02 |
-0.16, 0.19 |
0.9 |
| English Speaking |
|
|
|
| English |
— |
— |
|
| Other |
-0.09 |
-0.20, 0.02 |
0.10 |
| Any Religious Affiliation |
|
|
|
| yes |
— |
— |
|
| no |
0.00 |
-0.03, 0.02 |
0.6 |
| Gender |
|
|
|
| male |
— |
— |
|
| female |
0.01 |
-0.01, 0.03 |
0.5 |
| Ethnicity |
|
|
|
| NON-HISPANIC |
— |
— |
|
| HISPANIC |
0.05 |
-0.03, 0.13 |
0.2 |
| Population density |
0.00 |
0.00, 0.00 |
0.14 |
| r_pct |
0.00 |
0.00, 0.00 |
<0.001 |
| Soceioeconomic Status |
-0.17 |
-0.23, -0.11 |
<0.001 |
| Household Composition |
-0.06 |
-0.12, -0.01 |
0.016 |
| Minority Status and Language |
0.00 |
-0.05, 0.04 |
0.9 |
| Housing and Transportation |
-0.04 |
-0.08, 0.01 |
0.12 |
```
LS0tCnRpdGxlOiAiMjAyMi4xMC4xOCBWYXggSUJEIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazoKICAgIHRoZW1lczogcGFwZXIKICAgIHRvYzogeWVzCiAgICB0b2NfZmxvYXQ6IHllcwplZGl0b3Jfb3B0aW9uczoKICBjaHVua19vdXRwdXRfdHlwZTogaW5saW5lCmRhdGU6ICcyMDIyLTEwLTE4JwotLS0KCiMgTG9hZCBQYWNrYWdlcyAKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KGNvZGVib29rcikKbGlicmFyeShzdW1tYXJ5dG9vbHMpCmxpYnJhcnkoYnJvb20pCmxpYnJhcnkocGVyZm9ybWFuY2UpCmxpYnJhcnkoZ3QpCmxpYnJhcnkoZ3RzdW1tYXJ5KQpsaWJyYXJ5KGphbml0b3IpCmxpYnJhcnkoZm9yY2F0cykKbGlicmFyeShoZXJlKQpsaWJyYXJ5KHlhbWwpCmBgYAoKIyBJbXBvcnQgRGF0YSAKYGBge3J9CnZheF9kZWlkIDwtIHJlYWRfY3N2KCJ+L0Rlc2t0b3AvUi1Db2RlL1NET0hfVmF4L2liZF92YXguY3N2Iiwgc2hvd19jb2xfdHlwZXMgPSBGQUxTRSkKCmFnZXMgPC0gcmVhZF9jc3YoIn4vRGVza3RvcC9SLUNvZGUvU0RPSF9WYXgvc2JqX2lkX2FnZV95ZWFycy5jc3YiLCBzaG93X2NvbF90eXBlcyA9IEZBTFNFKQoKdmF4X2RlaWRfYWdlIDwtIGxlZnRfam9pbih2YXhfZGVpZCwgYWdlcykKCmBgYAoKIyBEYXRhIENsZWFuaW5nIHsudGFic2V0fQoKIyMgUlBMX1RIRU1FUyBFcnJvbmVvdXMgdmFsdWVzIApgYGB7cn0KdmF4X2RlaWRfYWdlICU+JQogIHNlbGVjdChhZ2VfeXJzLCBQQVRJRU5UX0dFTkRFUl9DRCwgUEFUSUVOVF9SQUNFX0RFU0MsIFBBVElFTlRfRVRITklDX0dST1VQX0RFU0MsIFBBVElFTlRfTEFOR1VBR0VfREVTQywgUEFUSUVOVF9SRUxJR0lPTl9ERVNDLCBQQVRJRU5UX01BUklUQUxfU1RBVFVTX0RFU0MsIFNUQVRFLCBBUkVBX1NRTUksIEVfVE9UUE9QLCBSUExfVEhFTUVTLCBSUExfVEhFTUUxLCBSUExfVEhFTUUyLCBSUExfVEhFTUUzLCBSUExfVEhFTUU0LCBGX1RIRU1FMSwgRl9USEVNRTIsIEZfVEhFTUUzLCBGX1RIRU1FNCwgRl9UT1RBTCwgcl9wY3QsIGZsdV8yMDE1LCBmbHVfMjAxNiwgZmx1XzIwMTcsIGZsdV8yMDE4LCBmbHVfMjAxOSwgZmx1XzIwMjAsIGZsdV8yMDIxLCBmbHVfMjAyMiwgdG90YWxfZmx1LCBwcmV2bmFyLCBwdmF4LCBhbnlfcG5ldW0sIGJvdGhfcG5ldW0sIHRvdGFsX2Nvdl92YXgsIHRvdGFsX3NoaW5ncml4KSAtPiB2YXhkZgp2YXhkZiAlPiUKbXV0YXRlKFJQTF9USEVNRVMgPSBuYV9pZihSUExfVEhFTUVTLCAiLTk5OSIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRVMgPSBuYV9pZihSUExfVEhFTUVTLCAiMCIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRTEgPSBuYV9pZihSUExfVEhFTUUxLCAiLTk5OSIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRTEgPSBuYV9pZihSUExfVEhFTUUxLCAiMCIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRTIgPSBuYV9pZihSUExfVEhFTUUyLCAiLTk5OSIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRTIgPSBuYV9pZihSUExfVEhFTUUyLCAiMCIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRTMgPSBuYV9pZihSUExfVEhFTUUzLCAiLTk5OSIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRTMgPSBuYV9pZihSUExfVEhFTUUzLCAiMCIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRTQgPSBuYV9pZihSUExfVEhFTUU0LCAiLTk5OSIpKSAlPiUKbXV0YXRlKFJQTF9USEVNRTQgPSBuYV9pZihSUExfVEhFTUU0LCAiMCIpKSAlPiUgCm11dGF0ZShGX1RPVEFMID0gbmFfaWYoRl9UT1RBTCwgIi05OTkiKSkgJT4lCm11dGF0ZShGX1RIRU1FMSA9IG5hX2lmKEZfVEhFTUUxLCAiLTk5OSIpKSAlPiUKbXV0YXRlKEZfVEhFTUUyID0gbmFfaWYoRl9USEVNRTIsICItOTk5IikpICU+JQptdXRhdGUoRl9USEVNRTMgPSBuYV9pZihGX1RIRU1FMywgIi05OTkiKSkgJT4lCm11dGF0ZShGX1RIRU1FNCA9IG5hX2lmKEZfVEhFTUU0LCAiLTk5OSIpKSAtPiB2YXhkZlRoZW1lCmBgYAoKCiMjIE1hcml0YWwgc3RhdHVzCmBgYHtyfQp2YXhkZlRoZW1lICU+JSAKbXV0YXRlKG1zdGF0XzUgPSBhc19mYWN0b3IoUEFUSUVOVF9NQVJJVEFMX1NUQVRVU19ERVNDKSwKICAgICAgICAgbXN0YXRfNSA9IGZjdF9yZWNvZGUobXN0YXRfNSwgZGl2X3NlcCA9ICJESVZPUkNFRCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpdl9zZXAgPSAiTEVHQUxMWSBTRVBBUkFURUQiLCB3aWRvdyA9ICJXSURPV0VEIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWFycmllZCA9ICJNQVJSSUVEIiwgdW5tYXJyaWVkID0gIlNJTkdMRSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHVua25vd24gPSAiVU5LTk9XTiIsIHVua25vd24gPSAiT1RIRVIiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICB1bm1hcnJpZWQgPSAiU0lHTklGSUNBTlQgT1RIRVIiKSwKICAgICAgICAgbXN0YXRfNSA9IGZjdF9yZWxldmVsKG1zdGF0XzUsIHJlZiA9ICdtYXJyaWVkJykpIC0+IHZheGRmVGhlbWVNcwpgYGAKCiMjIFJlbGlnaW9uIApgYGB7cn0KdmF4ZGZUaGVtZU1zICU+JSAKICBtdXRhdGUocmVsaWdfYWZmaWwgPSBhc19mYWN0b3IoUEFUSUVOVF9SRUxJR0lPTl9ERVNDKSwKICAgICAgICAgIHJlbGlnX2FmZmlsID0gZmN0X3JlY29kZShyZWxpZ19hZmZpbCwgeWVzID0gIkNBVEhPTElDIiwKICAgICAgICAgICAgICAgICAgICAgIG5vID0gIk5PTkUiLCAKICAgICAgICAgICAgICAgICAgICAgIHllcyA9ICJDSFJJU1RJQU4iLCB5ZXMgPSAiTFVUSEVSQU4iLAogICAgICAgICAgICAgICAgICAgICAgeWVzID0gIlJVU1NJQU4gT1JUSE9ET1giLAogICAgICAgICAgICAgICAgICAgICAgeWVzID0gIlBST1RFU1RBTlQiLCB5ZXMgPSAiQkFQVElTVCIsCiAgICAgICAgICAgICAgICAgICAgICB5ZXMgPSAiTUVUSE9ESVNUIiwgeWVzID0gIlBSRVNCWVRFUklBTiIsCiAgICAgICAgICAgICAgICAgICAgICB5ZXMgPSAiTk9OLURFTk9NSU5BVElPTkFMIiwgeWVzID0gIkpFV0lTSCIsCiAgICAgICAgICAgICAgICAgICAgICB5ZXMgPSAiTVVTTElNIiwgeWVzID0gIk9USEVSIiwKICAgICAgICAgICAgICAgICAgICAgIHllcyA9ICJFUElTQ09QQUxJQU4iLCB5ZXMgPSAiUEVOVEVDT1NUQUwiLAogICAgICAgICAgICAgICAgICAgICAgbm8gPSAiQUdOT1NUSUMiLCBubyA9ICJBVEhFSVNUIiwKICAgICAgICAgICAgICAgICAgICAgIHllcyA9ICJKRUhPVkFIJ1MgV0lUTkVTUyIsIHllcyA9ICJISU5EVSIsCiAgICAgICAgICAgICAgICAgICAgICB5ZXMgPSAiR1JFRUsgT1JUSE9ET1giLCB5ZXMgPSAiQ0hVUkNIIE9GIEpFU1VTIENIUklTVCBPRiBMQVRURVItREFZIFNBSU5UUyIsIHllcyA9ICJCQUhBSSIsIG5vID0gIlNQSVJJVFVBTCIsIHllcyA9ICJDSFVSQ0ggT0YgQ0hSSVNUIiwKICAgICAgICAgeWVzID0gIlNFVkVOVEggREFZIEFEVkVOVElTVCIsIHllcyA9ICJBUE9TVE9MSUMiLCB5ZXMgPSAiQlVEREhJU1QiLCB5ZXMgPSAiTkFaQVJFTkUiLCB5ZXMgPSAiQ09OR1JFR0FUSU9OQUwiLCB5ZXMgPSAiVU5JVEVEIENIVVJDSCBPRiBDSFIiLCB5ZXMgPSAiUkVGT1JNRUQiLCB5ZXMgPSAiUEFHQU4iLCB5ZXMgPSAiSkFJTiIsIHllcyA9ICJBU1NFTUJMWSBPRiBHT0QiLCB5ZXMgPSAiUkVPUkcgQ0hSIE9GIExBVCBEQVkiLCB5ZXMgPSAiUVVBS0VSIiwgeWVzID0gIlVOSVRBUklBTiBVTklWRVJTQUxJU1QiLCB5ZXMgPSAiTUVOTk9OSVRFIiwgeWVzID0gIkZSRUUgTUVUSE9ESVNUIiwgeWVzID0gIk5BVElWRSBBTUVSIFNQSVJJVEwiLCB5ZXMgPSAiV0lDQ0FOIiwgeWVzID0gIk9SVEhPRE9YIiwgeWVzID0gIlNBTFZBVElPTiBBUk1ZIiwgeWVzID0gIkRJU0NJUExFUyBPRiBDSFJJU1QiLCB5ZXMgPSAiQUZSSUNBTiBNRVRIT0RJU1QgRVAiLCB5ZXMgPSAiU0lLSCIsIHllcyA9ICJDSFVSQ0ggT0YgR09EIiwgeWVzID0gIlRBT0lTVCIsIHllcyA9ICJBTkdMSUNBTiIpLApyZWxpZ19hZmZpbCA9IGZjdF9yZWxldmVsKHJlbGlnX2FmZmlsLCByZWYgPSAneWVzJykpICU+JSAKbXV0YXRlKHJlbGlnX2FmZmlsID0gbmFfaWYocmVsaWdfYWZmaWwsICJVTktOT1dOIikpICU+JSAKbXV0YXRlKHJlbGlnX2FmZmlsID0gbmFfaWYocmVsaWdfYWZmaWwsICJQQVRJRU5UIFJFRlVTRUQiKSkgLT4gdmF4ZGZUaGVtZU1zUmVsCmBgYAoKIyMgUmFjZSAKYGBge3J9CnZheGRmVGhlbWVNc1JlbCAlPiUgCm11dGF0ZShyYWNlXzUgPSBhc19mYWN0b3IoUEFUSUVOVF9SQUNFX0RFU0MpLAogICAgICAgICByYWNlXzUgPSBmY3RfcmVjb2RlKHJhY2VfNSwgT3RoZXIgPSAiT1RIRVIiLAogICAgICAgICAgICAgICAgICBPdGhlciA9ICJVTktOT1dOIiwgT3RoZXIgPSAiQ0hPT1NFIE5PVCBUTyBESVNDTE9TRSIsCiAgICAgICAgICAgICAgICAgIE90aGVyID0gIk5BVElWRSBIQVdBSUlBTiBBTkQgT1RIRVIgUEFDSUZJQyBJU0xBTkRFUiIsIAogICAgICAgICAgICAgICAgICBPdGhlciA9ICJNSURETEUgRUFTVEVSTi9OT1JUSCBBRlJJQ0FOIiwKICAgICAgICAgICAgICAgIEFTSUFOID0gIkFTSUFOIElORElBTiIsIEFTSUFOID0gIk9USEVSIEFTSUFOIiwKICAgICAgICAgICAgICAgIEFTSUFOID0gIkpBUEFORVNFIiwgQVNJQU4gPSAiS09SRUFOIiwgQVNJQU4gPSAiRklMSVBJTk8iLAogICAgICAgICAgICAgICAgQVNJQU4gPSAiQ0hJTkVTRSIpLAogICAgICAgICByYWNlXzUgPSBmY3RfcmVsZXZlbChyYWNlXzUsIHJlZiA9ICdXSElURSBPUiBDQVVDQVNJQU4nKSkgLT4gdmF4ZGZUaGVtZU1zUmVsUmEKYGBgCgojIyBHZW5kZXIKYGBge3J9CnZheGRmVGhlbWVNc1JlbFJhICU+JSAKbXV0YXRlKGdlbmRlciA9IGFzX2ZhY3RvcihQQVRJRU5UX0dFTkRFUl9DRCksCiAgICAgICAgIGdlbmRlciA9IGZjdF9yZWNvZGUoZ2VuZGVyLCBtYWxlID0gIk0iLCBmZW1hbGUgPSAiRiIpLAogICAgICAgICBnZW5kZXIgPSBmY3RfcmVsZXZlbChnZW5kZXIsIHJlZiA9ICJtYWxlIikpIC0+IHZheGRmVGhlbWVNc1JlbFJhRwpgYGAKCiMjIExhbmd1YWdlCmBgYHtyfQp2YXhkZlRoZW1lTXNSZWxSYUcgJT4lIAogIG11dGF0ZShsYW5nXzMgPSBhc19mYWN0b3IoUEFUSUVOVF9MQU5HVUFHRV9ERVNDKSwKbGFuZ18zID0gZmN0X3JlY29kZShsYW5nXzMsIEVuZ2xpc2ggPSAiRU5HTElTSCIsCk90aGVyID0gIkFSQUJJQyIsIE90aGVyID0gIkpBUEFORVNFIiwKT3RoZXIgPSAiQ0hJTkVTRSwgTUFOREFSSU4iLApPdGhlciA9ICJLT1JFQU4iLCBPdGhlciA9ICJTSUdOIExBTkdVQUdFIiwKT3RoZXIgPSAiUlVTU0lBTiIsIE90aGVyID0gIlNQQU5JU0giLCBPdGhlciA9ICJBUk1FTklBTiIsCk90aGVyID0gIlRVUktJU0giLCBPdGhlciA9ICJISU5ESSIsIE90aGVyID0gIkJFTkdBTEkiLCBPdGhlciA9ICJGQVJTSTsgUEVSU0lBTiIsIE90aGVyID0gIkFMQkFOSUFOIiwgT3RoZXIgPSAiSE1PTkciLCBPdGhlciA9ICJST01BTklBTiIsIApPdGhlciA9ICJQVU5KQUJJIiwgT3RoZXIgPSAiQ1JPQVRJQU4iLCBPdGhlciA9ICJDSEFMREVBTiIsIApPdGhlciA9ICJCVVJNRVNFIiwgT3RoZXIgPSAiUE9SVFVHVUVTRSIsCk90aGVyID0gIlRBR0FMT0ciLCBPdGhlciA9ICJGUkVOQ0giLApPdGhlciA9ICJHRVJNQU4iLCBPdGhlciA9ICJDSElORVNFLCBDQU5UT05FU0UiLApPdGhlciA9ICJCT1NOSUFOIiwgT3RoZXIgPSAiVVJEVSIsCk90aGVyID0gIlVOS05PV04iKSwKbGFuZ18zID0gZmN0X3JlbGV2ZWwobGFuZ18zLCByZWYgPSAnRW5nbGlzaCcpKSAtPiB2YXhkZlRoZW1lTXNSZWxSYUdMCmBgYAoKIyMgRXRobmljaXR5CmBgYHtyfQp2YXhkZlRoZW1lTXNSZWxSYUdMICU+JSAKICBtdXRhdGUoZXRobmljXzMgPSBhc19mYWN0b3IoUEFUSUVOVF9FVEhOSUNfR1JPVVBfREVTQykpICU+JSAKIG11dGF0ZShldGhuaWNfMyA9IG5hX2lmKGV0aG5pY18zLCAiVU5LTk9XTiIpKSAlPiUgCm11dGF0ZShldGhuaWNfMyA9IG5hX2lmKGV0aG5pY18zLCAiQ0hPT1NFIE5PVCBUTyBESVNDTE9TRSIpKSAtPiB2YXhkZlRoZW1lTXNSZWxSYUdMRXRoCmBgYAoKIyMgUG9wdWxhdGlvbiBkZW5zaXR5CmBgYHtyfQp2YXhkZlRoZW1lTXNSZWxSYUdMRXRoICU+JSAKICBtdXRhdGUocG9wX2RlbnM9RV9UT1RQT1AvQVJFQV9TUU1JKSAtPiB2YXhkZlRoZW1lTXNSZWxSYUdMRXRoUG9wCmBgYAoKCiMgQ29kZWJvb2sgCmBgYHtyfQp2YXhkZlRoZW1lTXNSZWxSYUdMRXRoUG9wICU+JSAKc2VsZWN0KGFnZV95cnMsIGdlbmRlciwgcmFjZV81LCBldGhuaWNfMywgbGFuZ18zLCByZWxpZ19hZmZpbCwgbXN0YXRfNSwgU1RBVEUsQVJFQV9TUU1JLCBFX1RPVFBPUCwgcG9wX2RlbnMsIFJQTF9USEVNRVMsIFJQTF9USEVNRTEsIFJQTF9USEVNRTIsIFJQTF9USEVNRTMsIFJQTF9USEVNRTQsIEZfVE9UQUwsIEZfVEhFTUUxLCBGX1RIRU1FMiwgRl9USEVNRTMsIEZfVEhFTUU0LCByX3BjdCwgZmx1XzIwMTUsIGZsdV8yMDE2LCBmbHVfMjAxNywgZmx1XzIwMTgsIGZsdV8yMDE5LCBmbHVfMjAyMCwgZmx1XzIwMjEsIGZsdV8yMDIyLCB0b3RhbF9mbHUsIHByZXZuYXIsIHB2YXgsIGFueV9wbmV1bSwgYW55X3BuZXVtLCB0b3RhbF9jb3ZfdmF4LCB0b3RhbF9zaGluZ3JpeCkgLT4gdmF4X2NsZWFuMQpwcmludChkZlN1bW1hcnkodmF4X2NsZWFuMSksIG1ldGhvZCA9ICdyZW5kZXInKQpgYGAKIyBQYXRpZW50IENoYXJhY3RlcmlzdGljcyB7LnRhYnNldH0KCiMjIEJhc2VsaW5lIENoYXJhY3RlcmlzdGljcyAKYGBge3J9CnZheF9jbGVhbjEgJT4lIAogIHNlbGVjdChhZ2VfeXJzLCBnZW5kZXIsIHJhY2VfNSwgZXRobmljXzMsIGxhbmdfMywgcmVsaWdfYWZmaWwsIG1zdGF0XzUsIHBvcF9kZW5zLCBSUExfVEhFTUVTLCBSUExfVEhFTUUxLCBSUExfVEhFTUUyLCBSUExfVEhFTUUzLCBSUExfVEhFTUU0LCBmbHVfMjAyMSwgdG90YWxfZmx1LCBhbnlfcG5ldW0sIHRvdGFsX2Nvdl92YXgsIHRvdGFsX3NoaW5ncml4KSAtPiBiYXNlbGluZQpiYXNlbGluZSAlPiUgdGJsX3N1bW1hcnkobGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgUlBMX1RIRU1FNCB+ICJIb3VzaW5nIGFuZCBUcmFuc3BvcnRhdGlvbiIsIHBvcF9kZW5zIH4gIlBvcHVsYXRpb24gRGVuc2l0eSIpLAogICAgICAgIHN0YXRpc3RpYyA9IGxpc3QoYWxsX2NvbnRpbnVvdXMoKSB+ICJ7bWVhbn0gKHtzZH0pIiksCiAgICAgICAgbWlzc2luZ190ZXh0ID0gIihNaXNzaW5nKSIpCmBgYAoKIyMgQmFzZWxpbmUgY2hhcmFjdGVyaXN0aWNzIGJ5IEZsdSAyMDIxIApgYGB7cn0KYmFzZWxpbmUgJT4lIHRibF9zdW1tYXJ5KGJ5ID0gZmx1XzIwMjEsCiAgICAgICAgIGxhYmVsID0gbGlzdChhZ2VfeXJzIH4gIkFnZSIsIGdlbmRlcn4gIkdlbmRlciIsIHJhY2VfNSB+ICJSYWNlIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIkVuZ2xpc2ggU3BlYWtpbmciLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIFJQTF9USEVNRVMgfiAiVG90YWwgU1ZJIiwgUlBMX1RIRU1FMSB+ICJTb2NlaW9lY29ub21pYyBTdGF0dXMiLCBSUExfVEhFTUUyIH4gIkhvdXNlaG9sZCBDb21wb3NpdGlvbiIsIFJQTF9USEVNRTMgfiAiTWlub3JpdHkgU3RhdHVzIGFuZCBMYW5ndWFnZSIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iLCBwb3BfZGVucyB+ICJQb3B1bGF0aW9uIERlbnNpdHkiKSwKICAgICAgICBzdGF0aXN0aWMgPSBsaXN0KGFsbF9jb250aW51b3VzKCkgfiAie21lYW59ICh7c2R9KSIpLAogICAgICAgIG1pc3NpbmdfdGV4dCA9ICIoTWlzc2luZykiKSAlPiUgYWRkX3AoKQpgYGAKCiMjIEJhc2VsaW5lIGNoYXJhY3RlcmlzdGljcyBieSBwbmV1bW9uaWEgCmBgYHtyfQpiYXNlbGluZSAlPiUgdGJsX3N1bW1hcnkoYnkgPSBhbnlfcG5ldW0sCiAgICAgICAgIGxhYmVsID0gbGlzdChhZ2VfeXJzIH4gIkFnZSIsIGdlbmRlcn4gIkdlbmRlciIsIHJhY2VfNSB+ICJSYWNlIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIkVuZ2xpc2ggU3BlYWtpbmciLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIFJQTF9USEVNRVMgfiAiVG90YWwgU1ZJIiwgUlBMX1RIRU1FMSB+ICJTb2NlaW9lY29ub21pYyBTdGF0dXMiLCBSUExfVEhFTUUyIH4gIkhvdXNlaG9sZCBDb21wb3NpdGlvbiIsIFJQTF9USEVNRTMgfiAiTWlub3JpdHkgU3RhdHVzIGFuZCBMYW5ndWFnZSIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iLCBwb3BfZGVucyB+ICJQb3B1bGF0aW9uIERlbnNpdHkiKSwKICAgICAgICBzdGF0aXN0aWMgPSBsaXN0KGFsbF9jb250aW51b3VzKCkgfiAie21lYW59ICh7c2R9KSIpLAogICAgICAgIG1pc3NpbmdfdGV4dCA9ICIoTWlzc2luZykiKSAlPiUgYWRkX3AoKQpgYGAKCiMjIEJhc2VsaW5lIGNoYXJhY3RlcmlzdGljcyBieSBTaGluZ3JpeCAKYGBge3J9CmJhc2VsaW5lICU+JSB0Ymxfc3VtbWFyeShieSA9IHRvdGFsX3NoaW5ncml4LAogICAgICAgICBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBnZW5kZXJ+ICJHZW5kZXIiLCByYWNlXzUgfiAiUmFjZSIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJFbmdsaXNoIFNwZWFraW5nIiwgcmVsaWdfYWZmaWwgfiAiQW55IFJlbGlnaW91cyBBZmZpbGlhdGlvbiIsIG1zdGF0XzUgfiAiTWFyaXRhbCBTdGF0dXMiLCBSUExfVEhFTUVTIH4gIlRvdGFsIFNWSSIsIFJQTF9USEVNRTEgfiAiU29jZWlvZWNvbm9taWMgU3RhdHVzIiwgUlBMX1RIRU1FMiB+ICJIb3VzZWhvbGQgQ29tcG9zaXRpb24iLCBSUExfVEhFTUUzIH4gIk1pbm9yaXR5IFN0YXR1cyBhbmQgTGFuZ3VhZ2UiLCBSUExfVEhFTUU0IH4gIkhvdXNpbmcgYW5kIFRyYW5zcG9ydGF0aW9uIiwgcG9wX2RlbnMgfiAiUG9wdWxhdGlvbiBEZW5zaXR5IiksCiAgICAgICAgc3RhdGlzdGljID0gbGlzdChhbGxfY29udGludW91cygpIH4gInttZWFufSAoe3NkfSkiKSwKICAgICAgICBtaXNzaW5nX3RleHQgPSAiKE1pc3NpbmcpIikgJT4lIGFkZF9wKCkKYGBgCgojIyBCYXNlbGluZSBDaGFyYWN0ZXJpc3RpY3MgYnkgVG90YWxfQ09WSUQgCmBgYHtyfQpiYXNlbGluZSAlPiUgdGJsX3N1bW1hcnkoYnkgPSB0b3RhbF9jb3ZfdmF4LAogICAgICAgICBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBnZW5kZXJ+ICJHZW5kZXIiLCByYWNlXzUgfiAiUmFjZSIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJFbmdsaXNoIFNwZWFraW5nIiwgcmVsaWdfYWZmaWwgfiAiQW55IFJlbGlnaW91cyBBZmZpbGlhdGlvbiIsIG1zdGF0XzUgfiAiTWFyaXRhbCBTdGF0dXMiLCBSUExfVEhFTUVTIH4gIlRvdGFsIFNWSSIsIFJQTF9USEVNRTEgfiAiU29jZWlvZWNvbm9taWMgU3RhdHVzIiwgUlBMX1RIRU1FMiB+ICJIb3VzZWhvbGQgQ29tcG9zaXRpb24iLCBSUExfVEhFTUUzIH4gIk1pbm9yaXR5IFN0YXR1cyBhbmQgTGFuZ3VhZ2UiLCBSUExfVEhFTUU0IH4gIkhvdXNpbmcgYW5kIFRyYW5zcG9ydGF0aW9uIiwgcG9wX2RlbnMgfiAiUG9wdWxhdGlvbiBEZW5zaXR5IiksCiAgICAgICAgc3RhdGlzdGljID0gbGlzdChhbGxfY29udGludW91cygpIH4gInttZWFufSAoe3NkfSkiKSwKICAgICAgICBtaXNzaW5nX3RleHQgPSAiKE1pc3NpbmcpIikgJT4lIGFkZF9wKCkKYGBgCgoKIyBFc3RpbWF0ZSB2YXgvbm8gdmF4IGJ5IGRlbW9nCmBgYHtyfQp2YXhfY2xlYW4xICU+JSAKICB0YWJ5bChtc3RhdF81LCB0b3RhbF9jb3ZfdmF4KSAlPiUgCiAgYWRvcm5fdG90YWxzKGMoInJvdyIsICJjb2wiKSkgJT4lCiAgYWRvcm5fcGVyY2VudGFnZXMoInJvdyIpICU+JSAKICBhZG9ybl9wY3RfZm9ybWF0dGluZyhyb3VuZGluZyA9ICJoYWxmIHVwIiwgZGlnaXRzID0gMCkgJT4lCiAgYWRvcm5fbnMoKSAlPiUKICBhZG9ybl90aXRsZSgiY29tYmluZWQiKSAlPiUgCiAgZ3QoKQogIAoKdmF4X2NsZWFuMSAlPiUgCiAgdGFieWwoZXRobmljXzMsIHRvdGFsX2Nvdl92YXgpICU+JSAKICBhZG9ybl90b3RhbHMoYygicm93IiwgImNvbCIpKSAlPiUKICBhZG9ybl9wZXJjZW50YWdlcygicm93IikgJT4lIAogIGFkb3JuX3BjdF9mb3JtYXR0aW5nKHJvdW5kaW5nID0gImhhbGYgdXAiLCBkaWdpdHMgPSAwKSAlPiUKICBhZG9ybl9ucygpICU+JQogIGFkb3JuX3RpdGxlKCJjb21iaW5lZCIpICU+JSAKICBndCgpCiAgCgp2YXhfY2xlYW4xICU+JSAKICB0YWJ5bChyYWNlXzUsIHRvdGFsX2Nvdl92YXgpICU+JSAKICBhZG9ybl90b3RhbHMoYygicm93IiwgImNvbCIpKSAlPiUKICBhZG9ybl9wZXJjZW50YWdlcygicm93IikgJT4lIAogIGFkb3JuX3BjdF9mb3JtYXR0aW5nKHJvdW5kaW5nID0gImhhbGYgdXAiLCBkaWdpdHMgPSAwKSAlPiUKICBhZG9ybl9ucygpICU+JQogIGFkb3JuX3RpdGxlKCJjb21iaW5lZCIpICU+JSAKICBndCgpCgpgYGAKCiMgUHJlbGltIFZheCBNb2RlbHMgey50YWJzZXR9CgojIyBNb2RlbCAxOiBGbHUgMjAyMSArIFJQTF9USEVNRVMgCmBgYHtyfQpGbHUyMDIxX1NWSSA8LSBnbG0oZmx1XzIwMjEgfiBhZ2VfeXJzICsgbXN0YXRfNSArIHJhY2VfNSArIGxhbmdfMyArIHJlbGlnX2FmZmlsCiAgICAgICAgICAgICAgICsgZ2VuZGVyICsgZXRobmljXzMgKyBwb3BfZGVucyArIHJfcGN0ICsgUlBMX1RIRU1FUywKICAgICAgICAgICAgICBmYW1pbHkgPSAiYmlub21pYWwiLAogICAgICAgICAgICAgIGRhdGEgPSB2YXhfY2xlYW4xKQpzdW1tYXJ5KEZsdTIwMjFfU1ZJICkKYnJvb206OmdsYW5jZShGbHUyMDIxX1NWSSApCmJyb29tOjp0aWR5KEZsdTIwMjFfU1ZJICwgZXhwb25lbnRpYXRlID0gVFJVRSkKbW9kZWxfcGVyZm9ybWFuY2UoRmx1MjAyMV9TVkkgKQp0YmxfcmVncmVzc2lvbihGbHUyMDIxX1NWSSwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBSUExfVEhFTUVTIH4gIlRvdGFsIFNWSSIsIG1zdGF0XzUgfiAiTWFyaXRhbCBTdGF0dXMiLCBwb3BfZGVucyB+ICJQb3B1bGF0aW9uIERlbnNpdHkiKSwgZXhwb25lbnRpYXRlID0gVFJVRSkKYGBgCgojIyBNb2RlbCAyOiBGbHVfMjAyMSArIFJQTF9USEVNRVN4NApgYGB7cn0KRmx1MjAyMV80IDwtIGdsbShmbHVfMjAyMSB+ICBhZ2VfeXJzICsgcmFjZV81ICsgbXN0YXRfNSArIGxhbmdfMyArIHJlbGlnX2FmZmlsIAogICAgICAgKyBnZW5kZXIgKyBldGhuaWNfMyArIHBvcF9kZW5zICsgcl9wY3QgKyBSUExfVEhFTUUxICsgUlBMX1RIRU1FMiArIFJQTF9USEVNRTMgKyBSUExfVEhFTUU0LAogICAgICAgICAgICAgIGZhbWlseSA9ICJiaW5vbWlhbCIsCiAgICAgICAgICAgICAgZGF0YSA9IHZheF9jbGVhbjEpCnN1bW1hcnkoRmx1MjAyMV80KQpicm9vbTo6Z2xhbmNlKEZsdTIwMjFfNCkKYnJvb206OnRpZHkoRmx1MjAyMV80LCBleHBvbmVudGlhdGUgPSBUUlVFKQptb2RlbF9wZXJmb3JtYW5jZShGbHUyMDIxXzQpCnRibF9yZWdyZXNzaW9uKEZsdTIwMjFfNCwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgcmFjZV81IH4gIlJhY2UiLCBnZW5kZXJ+ICJHZW5kZXIiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iLCBwb3BfZGVucyB+ICJQb3B1bGF0aW9uIERlbnNpdHkiKSwgZXhwb25lbnRpYXRlID0gVFJVRSkKYGBgCgojIyBNb2RlbCAzOiBUb3RhbCBGbHUgKyBSUExfVEhFTUVTCmBgYHtyfQp0b3RhbGZsdV9TVkkgPC0gbG0odG90YWxfZmx1IH4gYWdlX3lycyArIG1zdGF0XzUgKyByYWNlXzUgKyBsYW5nXzMgKyByZWxpZ19hZmZpbAogICAgICAgICAgICAgICArIGdlbmRlciArIGV0aG5pY18zICsgcG9wX2RlbnMgKyByX3BjdCArIFJQTF9USEVNRVMsIGRhdGEgPSB2YXhfY2xlYW4xKSAKc3VtbWFyeSh0b3RhbGZsdV9TVkkpCmJyb29tOjpnbGFuY2UodG90YWxmbHVfU1ZJKQpicm9vbTo6dGlkeSh0b3RhbGZsdV9TVkksIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKHRvdGFsZmx1X1NWSSkKdGJsX3JlZ3Jlc3Npb24odG90YWxmbHVfU1ZJLCBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBwb3BfZGVucyB+ICJQb3B1bGF0aW9uIGRlbnNpdHkiLCBnZW5kZXJ+ICJHZW5kZXIiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBSUExfVEhFTUVTIH4gIlRvdGFsIFNWSSIsIG1zdGF0XzUgfiAiTWFyaXRhbCBTdGF0dXMiKSkKYGBgCgojIyBNb2RlbCA0OiBUb3RhbCBGbHUgKyBSUExfVEhFTUVTeDQKYGBge3J9CnRvdGFsZmx1XzQgPC0gbG0odG90YWxfZmx1IH4gYWdlX3lycyArIG1zdGF0XzUgKyByYWNlXzUgKyBsYW5nXzMgKyByZWxpZ19hZmZpbAogICAgICAgICAgICAgICArIGdlbmRlciArIGV0aG5pY18zICsgcG9wX2RlbnMgKyByX3BjdCArIFJQTF9USEVNRTEgKyBSUExfVEhFTUUyICsgUlBMX1RIRU1FMyArIFJQTF9USEVNRTQsIGRhdGEgPSB2YXhfY2xlYW4xKSAKc3VtbWFyeSh0b3RhbGZsdV80KQpicm9vbTo6Z2xhbmNlKHRvdGFsZmx1XzQpCmJyb29tOjp0aWR5KHRvdGFsZmx1XzQsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKHRvdGFsZmx1XzQpCnRibF9yZWdyZXNzaW9uKHRvdGFsZmx1XzQsIGxhYmVsID0gbGlzdChhZ2VfeXJzIH4gIkFnZSIsIHBvcF9kZW5zIH4gIlBvcHVsYXRpb24gZGVuc2l0eSIsIGdlbmRlcn4gIkdlbmRlciIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJFbmdsaXNoIFNwZWFraW5nIiwgcmVsaWdfYWZmaWwgfiAiQW55IFJlbGlnaW91cyBBZmZpbGlhdGlvbiIsIFJQTF9USEVNRTEgfiAiU29jZWlvZWNvbm9taWMgU3RhdHVzIiwgUlBMX1RIRU1FMiB+ICJIb3VzZWhvbGQgQ29tcG9zaXRpb24iLCBSUExfVEhFTUUzIH4gIk1pbm9yaXR5IFN0YXR1cyBhbmQgTGFuZ3VhZ2UiLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgUlBMX1RIRU1FNCB+ICJIb3VzaW5nIGFuZCBUcmFuc3BvcnRhdGlvbiIsIG1zdGF0XzUgfiAiTWFyaXRhbCBTdGF0dXMiKSkKYGBgCgoKIyMgTW9kZWwgNTogVG90YWwgQ09WSUQgKyBSUExfVEhFTUVTCmBgYHtyfQp0b3RhbGNvdl9TVkkgPC0gbG0odG90YWxfY292X3ZheCB+IGFnZV95cnMgKyBtc3RhdF81ICsgcmFjZV81ICsgbGFuZ18zICsgcmVsaWdfYWZmaWwKICAgICAgICAgICAgICAgKyBnZW5kZXIgKyBldGhuaWNfMyArIHBvcF9kZW5zICsgcl9wY3QgKyBSUExfVEhFTUVTLCBkYXRhID0gdmF4X2NsZWFuMSkgCnN1bW1hcnkodG90YWxjb3ZfU1ZJKQpicm9vbTo6Z2xhbmNlKHRvdGFsY292X1NWSSkKYnJvb206OnRpZHkodG90YWxjb3ZfU1ZJLCBleHBvbmVudGlhdGUgPSBUUlVFKQptb2RlbF9wZXJmb3JtYW5jZSh0b3RhbGNvdl9TVkkpCnRibF9yZWdyZXNzaW9uKHRvdGFsY292X1NWSSwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgcG9wX2RlbnMgfiAiUG9wdWxhdGlvbiBkZW5zaXR5IiwgZ2VuZGVyfiAiR2VuZGVyIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIkVuZ2xpc2ggU3BlYWtpbmciLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIikpCmBgYAoKIyMgTW9kZWwgNjogVG90YWwgQ09WSUQgKyBSUExfVEhFTUVTeDQKYGBge3J9CnRvdGFsY292XzQgPC0gbG0odG90YWxfY292X3ZheCB+IGFnZV95cnMgKyBtc3RhdF81ICsgcmFjZV81ICsgbGFuZ18zICsgcmVsaWdfYWZmaWwKICAgICAgICAgICAgICAgKyBnZW5kZXIgKyBldGhuaWNfMyArIHBvcF9kZW5zICsgcl9wY3QgKyBSUExfVEhFTUUxICsgUlBMX1RIRU1FMiArIFJQTF9USEVNRTMgKyBSUExfVEhFTUU0LCBkYXRhID0gdmF4X2NsZWFuMSkgCnN1bW1hcnkodG90YWxjb3ZfNCkKYnJvb206OmdsYW5jZSh0b3RhbGNvdl80KQpicm9vbTo6dGlkeSh0b3RhbGNvdl80LCBleHBvbmVudGlhdGUgPSBUUlVFKQptb2RlbF9wZXJmb3JtYW5jZSh0b3RhbGNvdl80KQp0YmxfcmVncmVzc2lvbih0b3RhbGNvdl80LCBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBwb3BfZGVucyB+ICJQb3B1bGF0aW9uIGRlbnNpdHkiLCBnZW5kZXJ+ICJHZW5kZXIiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIikpCmBgYAoKIyMgTW9kZWwgNzogQW55IHBuZXVtICsgUlBMX1RIRU1FUwpgYGB7cn0KYW55X3BuZXVtX1NWSSA8LSBsbShhbnlfcG5ldW0gfiBhZ2VfeXJzICsgbXN0YXRfNSArIHJhY2VfNSArIGxhbmdfMyArIHJlbGlnX2FmZmlsCiAgICAgICAgICAgICAgICsgZ2VuZGVyICsgZXRobmljXzMgKyBwb3BfZGVucyArIHJfcGN0ICsgUlBMX1RIRU1FUywgZGF0YSA9IHZheF9jbGVhbjEpIApzdW1tYXJ5KGFueV9wbmV1bV9TVkkpCmJyb29tOjpnbGFuY2UoYW55X3BuZXVtX1NWSSkKYnJvb206OnRpZHkoYW55X3BuZXVtX1NWSSwgZXhwb25lbnRpYXRlID0gVFJVRSkKbW9kZWxfcGVyZm9ybWFuY2UoYW55X3BuZXVtX1NWSSkKdGJsX3JlZ3Jlc3Npb24oYW55X3BuZXVtX1NWSSwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgcG9wX2RlbnMgfiAiUG9wdWxhdGlvbiBkZW5zaXR5IiwgZ2VuZGVyfiAiR2VuZGVyIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIkVuZ2xpc2ggU3BlYWtpbmciLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIikpCmBgYAoKIyMgTW9kZWwgODogQW55IHBuZXVtbyArIFJQTF9USEVNRVN4NApgYGB7cn0KYW55X3BuZXVtXzQgPC0gbG0oYW55X3BuZXVtIH4gYWdlX3lycyArIG1zdGF0XzUgKyByYWNlXzUgKyBsYW5nXzMgKyByZWxpZ19hZmZpbAogICAgICAgICAgICAgICArIGdlbmRlciArIGV0aG5pY18zICsgcG9wX2RlbnMgKyByX3BjdCArIFJQTF9USEVNRTEgKyBSUExfVEhFTUUyICsgUlBMX1RIRU1FMyArIFJQTF9USEVNRTQsIGRhdGEgPSB2YXhfY2xlYW4xKSAKc3VtbWFyeShhbnlfcG5ldW1fNCkKYnJvb206OmdsYW5jZShhbnlfcG5ldW1fNCkKYnJvb206OnRpZHkoYW55X3BuZXVtXzQsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKGFueV9wbmV1bV80KQp0YmxfcmVncmVzc2lvbihhbnlfcG5ldW1fNCwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgcG9wX2RlbnMgfiAiUG9wdWxhdGlvbiBkZW5zaXR5IiwgZ2VuZGVyfiAiR2VuZGVyIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIkVuZ2xpc2ggU3BlYWtpbmciLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgUlBMX1RIRU1FMSB+ICJTb2NlaW9lY29ub21pYyBTdGF0dXMiLCBSUExfVEhFTUUyIH4gIkhvdXNlaG9sZCBDb21wb3NpdGlvbiIsIFJQTF9USEVNRTMgfiAiTWlub3JpdHkgU3RhdHVzIGFuZCBMYW5ndWFnZSIsIG1zdGF0XzUgfiAiTWFyaXRhbCBTdGF0dXMiLCBSUExfVEhFTUU0IH4gIkhvdXNpbmcgYW5kIFRyYW5zcG9ydGF0aW9uIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIpKQpgYGAKCiMjIE1vZGVsIDk6IFNoaW5ncml4ICsgUlBMX1RIRU1FUwpgYGB7cn0KdmF4X2NsZWFuMSAlPiUgCm11dGF0ZShhZ2VfMiA9IGNhc2Vfd2hlbigKYWdlX3lyczw0OS45OSB+IDAsClRSVUUgfiAxKSkgLT4gdmF4X2NsZWFuMgpTaGluZ3JpeF9TVkkgPC0gbG0odG90YWxfc2hpbmdyaXggfiBhZ2VfMiArIG1zdGF0XzUgKyByYWNlXzUgKyBsYW5nXzMgKyByZWxpZ19hZmZpbAogICAgICAgICAgICAgICArIGdlbmRlciArIGV0aG5pY18zICsgcG9wX2RlbnMgKyByX3BjdCArIFJQTF9USEVNRVMsIGRhdGEgPSB2YXhfY2xlYW4yKSAKc3VtbWFyeShTaGluZ3JpeF9TVkkpCmJyb29tOjpnbGFuY2UoU2hpbmdyaXhfU1ZJKQpicm9vbTo6dGlkeShTaGluZ3JpeF9TVkksIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKFNoaW5ncml4X1NWSSkKdGJsX3JlZ3Jlc3Npb24oU2hpbmdyaXhfU1ZJLCBsYWJlbCA9IGxpc3QoYWdlXzIgfiAiQWdlID4gNTAiLCBwb3BfZGVucyB+ICJQb3B1bGF0aW9uIGRlbnNpdHkiLCBnZW5kZXJ+ICJHZW5kZXIiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBSUExfVEhFTUVTIH4gIlRvdGFsIFNWSSIsIG1zdGF0XzUgfiAiTWFyaXRhbCBTdGF0dXMiKSkKYGBgCgojIyBNb2RlbCAxMDogU2hpbmdyaXggKyBSUExfVEhFTUVTeDQgCmBgYHtyfQp0b3RhbF9zaGluZ3JpeF80IDwtIGxtKHRvdGFsX3NoaW5ncml4IH4gYWdlXzIgKyBtc3RhdF81ICsgcmFjZV81ICsgbGFuZ18zICsgcmVsaWdfYWZmaWwKICAgICAgICAgICAgICAgKyBnZW5kZXIgKyBldGhuaWNfMyArIHBvcF9kZW5zICsgcl9wY3QgKyBSUExfVEhFTUUxICsgUlBMX1RIRU1FMiArIFJQTF9USEVNRTMgKyBSUExfVEhFTUU0LCBkYXRhID0gdmF4X2NsZWFuMikgCnN1bW1hcnkodG90YWxfc2hpbmdyaXhfNCkKYnJvb206OmdsYW5jZSh0b3RhbF9zaGluZ3JpeF80KQpicm9vbTo6dGlkeSh0b3RhbF9zaGluZ3JpeF80LCBleHBvbmVudGlhdGUgPSBUUlVFKQptb2RlbF9wZXJmb3JtYW5jZSh0b3RhbF9zaGluZ3JpeF80KQp0YmxfcmVncmVzc2lvbih0b3RhbF9zaGluZ3JpeF80LCBsYWJlbCA9IGxpc3QoYWdlXzIgfiAiQWdlID4gNTAiLCBwb3BfZGVucyB+ICJQb3B1bGF0aW9uIGRlbnNpdHkiLCBnZW5kZXJ+ICJHZW5kZXIiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIikpCmBgYAoKCgoKYGBgCg==