# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("AMZN", "MSFT", "HD", "WMT")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
prices
## # A tibble: 5,040 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AMZN 2012-12-31 12.2 12.6 12.1 12.5 68380000 12.5
## 2 AMZN 2013-01-02 12.8 12.9 12.7 12.9 65420000 12.9
## 3 AMZN 2013-01-03 12.9 13.0 12.8 12.9 55018000 12.9
## 4 AMZN 2013-01-04 12.9 13.0 12.8 13.0 37484000 13.0
## 5 AMZN 2013-01-07 13.1 13.5 13.1 13.4 98200000 13.4
## 6 AMZN 2013-01-08 13.4 13.4 13.2 13.3 60214000 13.3
## 7 AMZN 2013-01-09 13.4 13.5 13.3 13.3 45312000 13.3
## 8 AMZN 2013-01-10 13.4 13.4 13.1 13.3 57268000 13.3
## 9 AMZN 2013-01-11 13.3 13.4 13.2 13.4 48266000 13.4
## 10 AMZN 2013-01-14 13.4 13.7 13.4 13.6 85500000 13.6
## # … with 5,030 more rows
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 80 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 AMZN 2013-03-28 0.0604
## 2 AMZN 2013-06-28 0.0412
## 3 AMZN 2013-09-30 0.119
## 4 AMZN 2013-12-31 0.243
## 5 AMZN 2014-03-31 -0.170
## 6 AMZN 2014-06-30 -0.0351
## 7 AMZN 2014-09-30 -0.00723
## 8 AMZN 2014-12-31 -0.0382
## 9 AMZN 2015-03-31 0.181
## 10 AMZN 2015-06-30 0.154
## # … with 70 more rows
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AMZN" "HD" "MSFT" "WMT"
# weights
weights <- c(0.30, 0.30, 0.15, 0.25)
weights
## [1] 0.30 0.30 0.15 0.25
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 AMZN 0.3
## 2 HD 0.3
## 3 MSFT 0.15
## 4 WMT 0.25
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 20 × 2
## date returns
## <date> <dbl>
## 1 2013-03-28 0.0922
## 2 2013-06-28 0.0749
## 3 2013-09-30 0.0260
## 4 2013-12-31 0.135
## 5 2014-03-31 -0.0521
## 6 2014-06-30 -0.00123
## 7 2014-09-30 0.0599
## 8 2014-12-31 0.0620
## 9 2015-03-31 0.0515
## 10 2015-06-30 0.0191
## 11 2015-09-30 0.0431
## 12 2015-12-31 0.148
## 13 2016-03-31 -0.00465
## 14 2016-06-30 0.0518
## 15 2016-09-30 0.0683
## 16 2016-12-30 -0.0156
## 17 2017-03-31 0.101
## 18 2017-06-30 0.0628
## 19 2017-09-29 0.0409
## 20 2017-12-29 0.186
# Data transformation: calculate skewness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# add portfolio skewness
add_row(tibble(asset = "portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_skewness_tbl
## # A tibble: 5 × 2
## asset skew
## <chr> <dbl>
## 1 AMZN -0.387
## 2 HD -0.130
## 3 MSFT -0.248
## 4 WMT 0.480
## 5 portfolio 0.353
# Plot skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset), data = asset_skewness_tbl %>%
filter(asset == "portfolio")) +
labs(y = "skewness")
Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.
Walmart is more likely to return extreme positive returns than my portfolio collectively. Amazon, Home Depot, and Microsoft have extreme negative returns and my portfolio has a positive return, but Walmart has the highest return with its skewness at 0.480.