soru ne oldugu
cevabinizi buraya yazin
library(wooldridge)
data("wage1")
head(wage1)
## wage educ exper tenure nonwhite female married numdep smsa northcen south
## 1 3.10 11 2 0 0 1 0 2 1 0 0
## 2 3.24 12 22 2 0 1 1 3 1 0 0
## 3 3.00 11 2 0 0 0 0 2 0 0 0
## 4 6.00 8 44 28 0 0 1 0 1 0 0
## 5 5.30 12 7 2 0 0 1 1 0 0 0
## 6 8.75 16 9 8 0 0 1 0 1 0 0
## west construc ndurman trcommpu trade services profserv profocc clerocc
## 1 1 0 0 0 0 0 0 0 0
## 2 1 0 0 0 0 1 0 0 0
## 3 1 0 0 0 1 0 0 0 0
## 4 1 0 0 0 0 0 0 0 1
## 5 1 0 0 0 0 0 0 0 0
## 6 1 0 0 0 0 0 1 1 0
## servocc lwage expersq tenursq
## 1 0 1.131402 4 0
## 2 1 1.175573 484 4
## 3 0 1.098612 4 0
## 4 0 1.791759 1936 784
## 5 0 1.667707 49 4
## 6 0 2.169054 81 64
library(wooldridge)
data("ceosal1")
library(rmarkdown)
paged_table(ceosal1)
mean(ceosal1$salary)
## [1] 1281.12
min(ceosal1$salary)
## [1] 223
min(ceosal1$salary)
## [1] 223
mean(ceosal1$roe)
## [1] 17.18421
min(ceosal1$roe)
## [1] 0.5
max(ceosal1$roe)
## [1] 56.3
lm(salary ~ roe, data = ceosal1)
##
## Call:
## lm(formula = salary ~ roe, data = ceosal1)
##
## Coefficients:
## (Intercept) roe
## 963.2 18.5
Örneği okuyun (sayfa 34), rstudio ile örneği tekrarlayın, wage1 veri setini kullanın
data(wage1)
Ortalama ücret
mean(wage1$wage)
## [1] 5.896103
lm(wage1$wage ~ wage1$educ)
##
## Call:
## lm(formula = wage1$wage ~ wage1$educ)
##
## Coefficients:
## (Intercept) wage1$educ
## -0.9049 0.5414
data(vote1)
lm(vote1$voteA ~ vote1$shareA)
##
## Call:
## lm(formula = vote1$voteA ~ vote1$shareA)
##
## Coefficients:
## (Intercept) vote1$shareA
## 26.8122 0.4638
roe_15 <- ceosal1$roe[1:15]
roe_15
## [1] 14.1 10.9 23.5 5.9 13.8 20.0 16.4 16.3 10.5 26.3 25.9 26.8 14.8 22.3 56.3
salary_15 <- ceosal1$salary[1:15]
salary_15
## [1] 1095 1001 1122 578 1368 1145 1078 1094 1237 833 567 933 1339 937 2011
Tablo2_2 <- cbind(roe_15, salary_15)
Tablo2_2
## roe_15 salary_15
## [1,] 14.1 1095
## [2,] 10.9 1001
## [3,] 23.5 1122
## [4,] 5.9 578
## [5,] 13.8 1368
## [6,] 20.0 1145
## [7,] 16.4 1078
## [8,] 16.3 1094
## [9,] 10.5 1237
## [10,] 26.3 833
## [11,] 25.9 567
## [12,] 26.8 933
## [13,] 14.8 1339
## [14,] 22.3 937
## [15,] 56.3 2011
tablonun ilk iki satırını oluşturduk bu iki sütuna üçüncü sütunu yani salaryhat’i eklemeliyiz. Tahmin formülümüzle (betaları bildiğimiz için) üçüncü sütunu ekleyebiliriz.
salaryhat <- 963.191 + 18.501 * roe_15
uhat <- salary_15 - salaryhat
Tablo2_2 <- cbind(roe_15, salary_15, salaryhat, uhat)
Tablo2_2
## roe_15 salary_15 salaryhat uhat
## [1,] 14.1 1095 1224.055 -129.055107
## [2,] 10.9 1001 1164.852 -163.851893
## [3,] 23.5 1122 1397.965 -275.964500
## [4,] 5.9 578 1072.347 -494.346902
## [5,] 13.8 1368 1218.505 149.495196
## [6,] 20.0 1145 1333.211 -188.211000
## [7,] 16.4 1078 1266.607 -188.607393
## [8,] 16.3 1094 1264.757 -170.757286
## [9,] 10.5 1237 1157.452 79.548500
## [10,] 26.3 833 1449.767 -616.767286
## [11,] 25.9 567 1442.367 -875.366893
## [12,] 26.8 933 1459.018 -526.017786
## [13,] 14.8 1339 1237.006 101.994196
## [14,] 22.3 937 1375.763 -438.763286
## [15,] 56.3 2011 2004.797 6.202714