# Load packages
library(tidyverse)
library(tidyquant)
Ra <- c("GM", "GOOG", "TSLA") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 30 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 GM 2022-01-31 -0.138
## 2 GM 2022-02-28 -0.114
## 3 GM 2022-03-31 -0.0638
## 4 GM 2022-04-29 -0.133
## 5 GM 2022-05-31 0.0203
## 6 GM 2022-06-30 -0.179
## 7 GM 2022-07-29 0.142
## 8 GM 2022-08-31 0.0562
## 9 GM 2022-09-30 -0.160
## 10 GM 2022-10-18 0.0673
## # … with 20 more rows
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 10 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-18 0.0186
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 30 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 GM 2022-01-31 -0.138 -0.101
## 2 GM 2022-02-28 -0.114 -0.0343
## 3 GM 2022-03-31 -0.0638 0.0341
## 4 GM 2022-04-29 -0.133 -0.133
## 5 GM 2022-05-31 0.0203 -0.0205
## 6 GM 2022-06-30 -0.179 -0.0871
## 7 GM 2022-07-29 0.142 0.123
## 8 GM 2022-08-31 0.0562 -0.0464
## 9 GM 2022-09-30 -0.160 -0.105
## 10 GM 2022-10-18 0.0673 0.0186
## # … with 20 more rows
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActiveP…¹ Alpha Annua…² Beta `Beta-` `Beta+` Corre…³ Corre…⁴ Infor…⁵
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 GM -0.13 -0.0093 -0.106 1.17 1.54 1.25 0.808 0.0047 -0.554
## 2 GOOG 0.0206 -0.0012 -0.0146 0.888 1.27 0.195 0.895 0.0005 0.168
## 3 TSLA -0.141 0.0195 0.261 1.82 0.667 3.42 0.779 0.0079 -0.313
## # … with 3 more variables: `R-squared` <dbl>, TrackingError <dbl>,
## # TreynorRatio <dbl>, and abbreviated variable names ¹ActivePremium,
## # ²AnnualizedAlpha, ³Correlation, ⁴`Correlationp-value`, ⁵InformationRatio
Tesla is the stock that has positive returns. As the same with General Motors, Tesla sees a decrease in returns to start but both end up with positive returns.It took a few months for both to gain returns but by the end of the year you can see a positive outcome.