library(wooldridge)
mean(wage1$wage)
## [1] 5.896103
library(wooldridge)
lm(wage1$wage ~ wage1$educ)
##
## Call:
## lm(formula = wage1$wage ~ wage1$educ)
##
## Coefficients:
## (Intercept) wage1$educ
## -0.9049 0.5414
library(wooldridge)
roe_15 <- ceosal1$roe[1:15]
roe_15
## [1] 14.1 10.9 23.5 5.9 13.8 20.0 16.4 16.3 10.5 26.3 25.9 26.8 14.8 22.3 56.3
library(wooldridge)
salary_15 <- ceosal1$salary[1:15]
salary_15
## [1] 1095 1001 1122 578 1368 1145 1078 1094 1237 833 567 933 1339 937 2011
library(wooldridge)
Tablo2_2 <- cbind(roe_15, salary_15)
Tablo2_2
## roe_15 salary_15
## [1,] 14.1 1095
## [2,] 10.9 1001
## [3,] 23.5 1122
## [4,] 5.9 578
## [5,] 13.8 1368
## [6,] 20.0 1145
## [7,] 16.4 1078
## [8,] 16.3 1094
## [9,] 10.5 1237
## [10,] 26.3 833
## [11,] 25.9 567
## [12,] 26.8 933
## [13,] 14.8 1339
## [14,] 22.3 937
## [15,] 56.3 2011
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.