Instalamos la base de datos
library(readr)
library(haven)
library(tidyselect)
library(haven)
Taller_1<-read_dta("C:/Users/Martin Alejandro/OneDrive/Documentos/econometria/eco II/Taller_1.dta")
View(Taller_1)
procedemos a observar los distintos datos
summary(Taller_1)
## price sqft beds baths age
## Min. : 50000 Min. : 704 Min. :1.00 Min. :1.000 Min. : 0.00
## 1st Qu.: 79900 1st Qu.:1201 1st Qu.:3.00 1st Qu.:2.000 1st Qu.: 8.00
## Median : 99950 Median :1516 Median :3.00 Median :2.000 Median :18.00
## Mean :112811 Mean :1612 Mean :3.17 Mean :2.055 Mean :24.56
## 3rd Qu.:128000 3rd Qu.:1874 3rd Qu.:4.00 3rd Qu.:2.000 3rd Qu.:38.00
## Max. :500000 Max. :4300 Max. :6.00 Max. :5.000 Max. :96.00
## stories vacant
## Min. :1.000 Min. :0.0000
## 1st Qu.:1.000 1st Qu.:0.0000
## Median :1.000 Median :1.0000
## Mean :1.207 Mean :0.5284
## 3rd Qu.:1.000 3rd Qu.:1.0000
## Max. :2.000 Max. :1.0000
library(modeest)
mfv(Taller_1$price) #Moda de la variable
## [1] 75000
mfv(Taller_1$sqft)
## [1] 1064
mfv(Taller_1$beds)
## [1] 3
mfv(Taller_1$baths)
## [1] 2
mfv(Taller_1$age)
## [1] 16
mfv(Taller_1$stories)
## [1] 1
mfv(Taller_1$vacant)
## [1] 1
library(moments) #Se activa el paquete moments para encontrar la curtosis y la asimetria
##
## Attaching package: 'moments'
## The following object is masked from 'package:modeest':
##
## skewness
skewness(Taller_1$price) # Coeficiente de asimetria de la variable
## [1] 2.707592
skewness(Taller_1$sqft)
## [1] 1.149429
skewness(Taller_1$beds)
## [1] 0.5459253
skewness(Taller_1$baths)
## [1] 0.351758
skewness(Taller_1$age)
## [1] 1.099061
skewness(Taller_1$stories)
## [1] 1.447726
skewness(Taller_1$vacant)
## [1] -0.1138202
kurtosis(Taller_1)
## price sqft beds baths age stories vacant
## 14.772683 4.940148 3.941886 3.624871 3.825866 3.095910 1.012955
price<-Taller_1$price
sqft<-Taller_1$sqft
beds<-Taller_1$beds
baths<-Taller_1$baths
age<-Taller_1$age
stories<-Taller_1$stories
vacant<-Taller_1$vacant
#variable price sera la variable dependiente, las demas seran las explicativas
modelo1<- lm(price ~ sqft + beds + baths + age + stories + vacant)
res<-residuals(modelo1)
summary(modelo1)
##
## Call:
## lm(formula = price ~ sqft + beds + baths + age + stories + vacant)
##
## Residuals:
## Min 1Q Median 3Q Max
## -90740 -17215 -1734 13923 167282
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36741.177 5529.365 6.645 5.34e-11 ***
## sqft 96.054 2.979 32.248 < 2e-16 ***
## beds -17786.861 1956.722 -9.090 < 2e-16 ***
## baths -1009.123 2651.334 -0.381 0.7036
## age -331.464 53.565 -6.188 9.36e-10 ***
## stories -5743.812 3206.128 -1.792 0.0736 .
## vacant -9895.778 1938.365 -5.105 4.06e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28030 on 873 degrees of freedom
## Multiple R-squared: 0.7202, Adjusted R-squared: 0.7183
## F-statistic: 374.5 on 6 and 873 DF, p-value: < 2.2e-16
hist(res)
mean(res)
## [1] 2.766841e-12
estimated_price <- fitted.values(modelo1)
cor(res, estimated_price)
## [1] 4.084423e-18
plot(modelo1,which = 1)
library(ggplot2)
SampleQuantiles <- rstandard(modelo1)
(ggplot(modelo1,aes(qqnorm(SampleQuantiles)[[1]],SampleQuantiles))
+ geom_point(na.rm = TRUE,col="red")
+ geom_abline()
+ scale_x_continuous(name = "Theorical Quantiles")
+ scale_y_continuous(name = "Sample Quantiles"))
(ggplot(modelo1, aes(fitted.values(modelo1),res))
+ geom_point(col=I("red"))
+ stat_smooth(method = "loess")
+ stat_binhex(bins = 100)
+ scale_fill_gradient(low = "blue",high = "black")
+ geom_hline(yintercept = 0,col ="black", linetype = "dashed")
+ xlab("Fitted Values")
+ ylab("Residuals"))
## `geom_smooth()` using formula 'y ~ x'
residualesrezagados<-dplyr::lag(res)
plot(res,residualesrezagados)
se predice el precio de dos casas las cuales toman valores para la primera: sqft1: 1400 y age1: 20; para la segunda: sqft2: 1800 y age2: 20
Modelo2 <- lm(price ~ sqft + age, data = Taller_1)
library(tibble)
### Primera forma
## Predicción del precio de una casa de 1400 pies cuadrados ##
cvalues1 <- tibble(sqft = 1400,
age = 20)
predict(Modelo2, cvalues1, interval = "prediction")
## fit lwr upr
## 1 96710.01 37695.21 155724.8
## Predicción del precio de una casa con 1800 pies cuadrados ##
cvalues2 <- tibble(sqft = 1800,
age = 20)
predict(Modelo2, cvalues2, interval = "prediction")
## fit lwr upr
## 1 128675 69663.77 187686.2
### Segunda forma
library(tibble)
library(broom)
tidy(Modelo2, quick=TRUE)
## # A tibble: 3 × 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -11490. 3741. -3.07 2.20e- 3
## 2 sqft 79.9 1.95 41.0 2.61e-206
## 3 age -184. 50.2 -3.67 2.62e- 4
nuevo <- data.frame(sqft=c(1400, 1800),
age=c(20))
predict(object=Modelo2, newdata=nuevo, interval = "prediction")
## fit lwr upr
## 1 96710.01 37695.21 155724.8
## 2 128674.98 69663.77 187686.2
para verificar si el modelo se encuentra con problemas de heteroceasticidad, se realizaran diferentes pruebas, como la de Breush-Pagan, la de White, la de Goldfeld-Quant, entre otras que son las mas reconocidas, con una que indique heteroceasticidad se presume que el modelo presenta problemas.
### Prueba de Breusch-Pagan
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
bptest(modelo1,studentize = FALSE)
##
## Breusch-Pagan test
##
## data: modelo1
## BP = 785.04, df = 6, p-value < 2.2e-16
bptest(modelo1)
##
## studentized Breusch-Pagan test
##
## data: modelo1
## BP = 218.16, df = 6, p-value < 2.2e-16
library(car)
## Loading required package: carData
ncvTest(modelo1)
## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 715.1047, Df = 1, p = < 2.22e-16
### Prueba de White
library(readr)
bptest(modelo1, ~ fitted(modelo1) + I(fitted(modelo1)^2),studentize = FALSE)
##
## Breusch-Pagan test
##
## data: modelo1
## BP = 1183.4, df = 2, p-value < 2.2e-16
ncvTest(modelo1, ~ fitted(modelo1) + I(fitted(modelo1)^2))
## Non-constant Variance Score Test
## Variance formula: ~ fitted(modelo1) + I(fitted(modelo1)^2)
## Chisquare = 1183.431, Df = 2, p = < 2.22e-16
### Prueba de Goldfeld-Quandt
gqtest(modelo1)
##
## Goldfeld-Quandt test
##
## data: modelo1
## GQ = 1.3854, df1 = 433, df2 = 433, p-value = 0.0003592
## alternative hypothesis: variance increases from segment 1 to 2
gqtest(modelo1,order.by = ~ sqft + beds + baths + age + stories + vacant, data = Taller_1)
##
## Goldfeld-Quandt test
##
## data: modelo1
## GQ = 0.53517, df1 = 433, df2 = 433, p-value = 1
## alternative hypothesis: variance increases from segment 1 to 2
### Prueba de Park
Residuales2 <- (res^2)
Park1 <- lm(log(Residuales2) ~ log(sqft))
summary(Park1)
##
## Call:
## lm(formula = log(Residuales2) ~ log(sqft))
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.9026 -0.8179 0.4323 1.4269 4.3576
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.4936 1.7024 2.052 0.0405 *
## log(sqft) 2.1022 0.2319 9.066 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.142 on 878 degrees of freedom
## Multiple R-squared: 0.08561, Adjusted R-squared: 0.08456
## F-statistic: 82.2 on 1 and 878 DF, p-value: < 2.2e-16
Park2 <- lm(log(Residuales2) ~ log(beds))
summary(Park2)
##
## Call:
## lm(formula = log(Residuales2) ~ log(beds))
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.3315 -0.8803 0.4325 1.4715 5.1633
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.0892 0.3921 46.132 <2e-16 ***
## log(beds) 0.7304 0.3406 2.145 0.0323 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.234 on 878 degrees of freedom
## Multiple R-squared: 0.005211, Adjusted R-squared: 0.004078
## F-statistic: 4.599 on 1 and 878 DF, p-value: 0.03226
Park3 <- lm(log(Residuales2) ~ log(baths))
summary(Park3)
##
## Call:
## lm(formula = log(Residuales2) ~ log(baths))
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.2372 -0.9064 0.4209 1.4609 4.6879
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.1294 0.1572 115.358 < 2e-16 ***
## log(baths) 1.1860 0.2093 5.666 1.98e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.2 on 878 degrees of freedom
## Multiple R-squared: 0.03528, Adjusted R-squared: 0.03418
## F-statistic: 32.1 on 1 and 878 DF, p-value: 1.981e-08
Park4 <- lm(log(Residuales2) ~ log(age + 0.0001))
summary(Park4)
##
## Call:
## lm(formula = log(Residuales2) ~ log(age + 1e-04))
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.1166 -0.9061 0.3690 1.4582 5.0738
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.04980 0.09224 206.521 <2e-16 ***
## log(age + 1e-04) -0.06260 0.02468 -2.536 0.0114 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.232 on 878 degrees of freedom
## Multiple R-squared: 0.007273, Adjusted R-squared: 0.006143
## F-statistic: 6.433 on 1 and 878 DF, p-value: 0.01138
Park5 <- lm(log(Residuales2) ~ log(stories))
summary(Park5)
##
## Call:
## lm(formula = log(Residuales2) ~ log(stories))
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.0417 -0.8627 0.4259 1.4286 4.9716
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.75601 0.08397 223.366 < 2e-16 ***
## log(stories) 1.10527 0.26638 4.149 3.66e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.218 on 878 degrees of freedom
## Multiple R-squared: 0.01923, Adjusted R-squared: 0.01811
## F-statistic: 17.22 on 1 and 878 DF, p-value: 3.661e-05
### Prueba de Glesjer
## años
age.x <- (age + 0.001)
Glesjer <- abs(res)
summary(lm(Glesjer ~ age.x, data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ age.x, data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -21103 -11826 -4634 6304 145909
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 21541.27 1011.52 21.296 <2e-16 ***
## age.x -56.19 31.53 -1.782 0.0751 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19300 on 878 degrees of freedom
## Multiple R-squared: 0.003604, Adjusted R-squared: 0.002469
## F-statistic: 3.176 on 1 and 878 DF, p-value: 0.07508
summary(lm(Glesjer ~ I(1/(age.x)), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(1/(age.x)), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22911 -11974 -4389 6466 147345
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19934.918 672.253 29.654 <2e-16 ***
## I(1/(age.x)) 3.683 2.714 1.357 0.175
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19320 on 878 degrees of freedom
## Multiple R-squared: 0.002093, Adjusted R-squared: 0.0009565
## F-statistic: 1.842 on 1 and 878 DF, p-value: 0.1751
summary(lm(Glesjer ~ I(1/sqrt(age.x)), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(1/sqrt(age.x)), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23077 -12016 -4403 6490 147319
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19891.75 678.15 29.332 <2e-16 ***
## I(1/sqrt(age.x)) 123.09 86.51 1.423 0.155
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19320 on 878 degrees of freedom
## Multiple R-squared: 0.002301, Adjusted R-squared: 0.001164
## F-statistic: 2.025 on 1 and 878 DF, p-value: 0.1551
summary(lm(Glesjer ~ sqrt(age.x), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ sqrt(age.x), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22907 -11698 -4411 6293 145001
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23638.5 1456.0 16.236 < 2e-16 ***
## sqrt(age.x) -783.9 293.8 -2.668 0.00776 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19260 on 878 degrees of freedom
## Multiple R-squared: 0.008044, Adjusted R-squared: 0.006914
## F-statistic: 7.12 on 1 and 878 DF, p-value: 0.007764
summary(lm(Glesjer ~ I(age.x^2), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(age.x^2), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20243 -11930 -4537 6710 146884
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20399.2177 778.1990 26.21 <2e-16 ***
## I(age.x^2) -0.2313 0.4131 -0.56 0.576
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19340 on 878 degrees of freedom
## Multiple R-squared: 0.0003568, Adjusted R-squared: -0.0007818
## F-statistic: 0.3134 on 1 and 878 DF, p-value: 0.5758
summary(lm(Glesjer ~ I(age.x^-2), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(age.x^-2), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22906 -11974 -4389 6465 147346
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.994e+04 6.722e+02 29.658 <2e-16 ***
## I(age.x^-2) 3.678e-03 2.714e-03 1.355 0.176
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19320 on 878 degrees of freedom
## Multiple R-squared: 0.002088, Adjusted R-squared: 0.0009512
## F-statistic: 1.837 on 1 and 878 DF, p-value: 0.1757
## pies cuadrados
summary(lm(Glesjer ~ sqft, data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ sqft, data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -45149 -9764 -2894 7419 113946
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8775.521 1809.443 -4.85 1.46e-06 ***
## sqft 17.951 1.066 16.84 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16810 on 878 degrees of freedom
## Multiple R-squared: 0.2441, Adjusted R-squared: 0.2433
## F-statistic: 283.6 on 1 and 878 DF, p-value: < 2.2e-16
summary(lm(Glesjer ~ I(1/(sqft)), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(1/(sqft)), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -31771 -11071 -3165 7534 133372
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 43984 2083 21.11 <2e-16 ***
## I(1/(sqft)) -34858880 2916934 -11.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17940 on 878 degrees of freedom
## Multiple R-squared: 0.1399, Adjusted R-squared: 0.1389
## F-statistic: 142.8 on 1 and 878 DF, p-value: < 2.2e-16
summary(lm(Glesjer ~ I(1/sqrt(sqft)), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(1/sqrt(sqft)), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34678 -10887 -3177 7479 129623
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 71308 3937 18.11 <2e-16 ***
## I(1/sqrt(sqft)) -1979307 150612 -13.14 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17680 on 878 degrees of freedom
## Multiple R-squared: 0.1644, Adjusted R-squared: 0.1634
## F-statistic: 172.7 on 1 and 878 DF, p-value: < 2.2e-16
summary(lm(Glesjer ~ sqrt(sqft), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ sqrt(sqft), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -41540 -10045 -2931 7420 119810
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36310.28 3659.48 -9.922 <2e-16 ***
## sqrt(sqft) 1424.33 91.15 15.627 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17110 on 878 degrees of freedom
## Multiple R-squared: 0.2176, Adjusted R-squared: 0.2167
## F-statistic: 244.2 on 1 and 878 DF, p-value: < 2.2e-16
summary(lm(Glesjer ~ I(sqft^2), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(sqft^2), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -51157 -9414 -2729 6950 112852
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.867e+03 9.368e+02 6.262 5.94e-10 ***
## I(sqft^2) 4.961e-03 2.632e-04 18.849 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16320 on 878 degrees of freedom
## Multiple R-squared: 0.2881, Adjusted R-squared: 0.2873
## F-statistic: 355.3 on 1 and 878 DF, p-value: < 2.2e-16
summary(lm(Glesjer ~ I(sqft^-2), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(sqft^-2), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27248 -11271 -3590 6806 138788
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.013e+04 1.194e+03 25.235 <2e-16 ***
## I(sqft^-2) -1.954e+10 2.001e+09 -9.762 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18370 on 878 degrees of freedom
## Multiple R-squared: 0.09792, Adjusted R-squared: 0.09689
## F-statistic: 95.3 on 1 and 878 DF, p-value: < 2.2e-16
## camas
summary(lm(Glesjer ~ beds, data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ beds, data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -26743 -11745 -4043 6701 147861
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6386.2 3023.3 2.112 0.0349 *
## beds 4344.8 931.7 4.663 3.6e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19100 on 878 degrees of freedom
## Multiple R-squared: 0.02417, Adjusted R-squared: 0.02306
## F-statistic: 21.75 on 1 and 878 DF, p-value: 3.595e-06
summary(lm(Glesjer ~ I(1/(beds)), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(1/(beds)), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22399 -11996 -4070 6806 147176
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29258 2820 10.374 < 2e-16 ***
## I(1/(beds)) -27459 8285 -3.314 0.000957 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19220 on 878 degrees of freedom
## Multiple R-squared: 0.01236, Adjusted R-squared: 0.01123
## F-statistic: 10.98 on 1 and 878 DF, p-value: 0.0009569
summary(lm(Glesjer ~ I(1/sqrt(beds)), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(1/sqrt(beds)), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23429 -11974 -4024 6935 147322
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 41418 5740 7.216 1.16e-12 ***
## I(1/sqrt(beds)) -37168 9973 -3.727 0.000206 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19190 on 878 degrees of freedom
## Multiple R-squared: 0.01557, Adjusted R-squared: 0.01445
## F-statistic: 13.89 on 1 and 878 DF, p-value: 0.0002063
summary(lm(Glesjer ~ sqrt(beds), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ sqrt(beds), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25655 -11837 -4003 6865 147680
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5900 5941 -0.993 0.321
## sqrt(beds) 14723 3337 4.413 1.15e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19130 on 878 degrees of freedom
## Multiple R-squared: 0.0217, Adjusted R-squared: 0.02058
## F-statistic: 19.47 on 1 and 878 DF, p-value: 1.148e-05
summary(lm(Glesjer ~ I(beds^2), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(beds^2), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -28573 -11586 -4045 6723 148154
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13045.7 1575.3 8.282 4.51e-16 ***
## I(beds^2) 675.8 136.6 4.948 8.99e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19070 on 878 degrees of freedom
## Multiple R-squared: 0.02713, Adjusted R-squared: 0.02602
## F-statistic: 24.48 on 1 and 878 DF, p-value: 8.986e-07
summary(lm(Glesjer ~ I(beds^-2), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(beds^-2), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -21409 -12081 -4348 6764 147002
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23044 1362 16.913 <2e-16 ***
## I(beds^-2) -24877 10336 -2.407 0.0163 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19280 on 878 degrees of freedom
## Multiple R-squared: 0.006555, Adjusted R-squared: 0.005423
## F-statistic: 5.793 on 1 and 878 DF, p-value: 0.01629
## Baños
summary(lm(Glesjer ~ baths, data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ baths, data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -28588 -11022 -3326 7253 138403
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1217.7 2001.7 0.608 0.543
## baths 9220.3 926.7 9.950 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18330 on 878 degrees of freedom
## Multiple R-squared: 0.1013, Adjusted R-squared: 0.1003
## F-statistic: 99 on 1 and 878 DF, p-value: < 2.2e-16
summary(lm(Glesjer ~ I(1/(baths)), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(1/(baths)), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23931 -11726 -3814 6972 143061
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 30416 1719 17.694 < 2e-16 ***
## I(1/(baths)) -18585 2894 -6.423 2.19e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18900 on 878 degrees of freedom
## Multiple R-squared: 0.04488, Adjusted R-squared: 0.04379
## F-statistic: 41.25 on 1 and 878 DF, p-value: 2.188e-10
summary(lm(Glesjer ~ I(1/sqrt(baths)), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(1/sqrt(baths)), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24966 -11613 -3847 6973 142025
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 44523 3427 12.992 < 2e-16 ***
## I(1/sqrt(baths)) -33371 4613 -7.234 1.02e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18790 on 878 degrees of freedom
## Multiple R-squared: 0.05624, Adjusted R-squared: 0.05517
## F-statistic: 52.32 on 1 and 878 DF, p-value: 1.025e-12
summary(lm(Glesjer ~ sqrt(baths), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ sqrt(baths), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27438 -11377 -3337 7016 139553
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -13417 3756 -3.572 0.000374 ***
## sqrt(baths) 23756 2620 9.065 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18490 on 878 degrees of freedom
## Multiple R-squared: 0.08559, Adjusted R-squared: 0.08455
## F-statistic: 82.18 on 1 and 878 DF, p-value: < 2.2e-16
summary(lm(Glesjer ~ I(baths^2), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(baths^2), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -31666 -10720 -3152 6977 137112
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9387.2 1131.4 8.297 4e-16 ***
## I(baths^2) 2309.1 204.3 11.300 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18070 on 878 degrees of freedom
## Multiple R-squared: 0.127, Adjusted R-squared: 0.126
## F-statistic: 127.7 on 1 and 878 DF, p-value: < 2.2e-16
summary(lm(Glesjer ~ I(baths^-2), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(baths^-2), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22490 -11933 -3971 6653 144501
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23983.2 978.7 24.504 < 2e-16 ***
## I(baths^-2) -10828.8 2092.6 -5.175 2.83e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19050 on 878 degrees of freedom
## Multiple R-squared: 0.0296, Adjusted R-squared: 0.02849
## F-statistic: 26.78 on 1 and 878 DF, p-value: 2.83e-07
## pisos o plantas
summary(lm(Glesjer ~ stories, data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ stories, data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27950 -11526 -3667 6219 139042
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7870 2002 3.931 9.11e-05 ***
## stories 10185 1572 6.477 1.55e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18890 on 878 degrees of freedom
## Multiple R-squared: 0.0456, Adjusted R-squared: 0.04452
## F-statistic: 41.95 on 1 and 878 DF, p-value: 1.554e-10
summary(lm(Glesjer ~ I(1/(stories)), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(1/(stories)), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27950 -11526 -3667 6219 139042
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 38425 2891 13.292 < 2e-16 ***
## I(1/(stories)) -20370 3145 -6.477 1.55e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18890 on 878 degrees of freedom
## Multiple R-squared: 0.0456, Adjusted R-squared: 0.04452
## F-statistic: 41.95 on 1 and 878 DF, p-value: 1.554e-10
summary(lm(Glesjer ~ I(1/sqrt(stories)), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(1/sqrt(stories)), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27950 -11526 -3667 6219 139042
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 52829 5084 10.392 < 2e-16 ***
## I(1/sqrt(stories)) -34774 5369 -6.477 1.55e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18890 on 878 degrees of freedom
## Multiple R-squared: 0.0456, Adjusted R-squared: 0.04452
## F-statistic: 41.95 on 1 and 878 DF, p-value: 1.554e-10
summary(lm(Glesjer ~ sqrt(stories), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ sqrt(stories), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27950 -11526 -3667 6219 139042
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6534 4170 -1.567 0.118
## sqrt(stories) 24589 3796 6.477 1.55e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18890 on 878 degrees of freedom
## Multiple R-squared: 0.0456, Adjusted R-squared: 0.04452
## F-statistic: 41.95 on 1 and 878 DF, p-value: 1.554e-10
summary(lm(Glesjer ~ I(stories^2), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(stories^2), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27950 -11526 -3667 6219 139042
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14659.7 1061.6 13.809 < 2e-16 ***
## I(stories^2) 3395.0 524.2 6.477 1.55e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18890 on 878 degrees of freedom
## Multiple R-squared: 0.0456, Adjusted R-squared: 0.04452
## F-statistic: 41.95 on 1 and 878 DF, p-value: 1.554e-10
summary(lm(Glesjer ~ I(stories^-2), data = Taller_1))
##
## Call:
## lm(formula = Glesjer ~ I(stories^-2), data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27950 -11526 -3667 6219 139042
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 31635 1882 16.806 < 2e-16 ***
## I(stories^-2) -13580 2097 -6.477 1.55e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18890 on 878 degrees of freedom
## Multiple R-squared: 0.0456, Adjusted R-squared: 0.04452
## F-statistic: 41.95 on 1 and 878 DF, p-value: 1.554e-10
se procede a estimar los a1 y a2 que suponen una estructura de la heteroceasticidad aditiva y/o multiplicativa
Modelo1 <- lm(price ~ sqft + beds + baths + age + stories + vacant, data = Taller_1)
summary(Modelo1)
##
## Call:
## lm(formula = price ~ sqft + beds + baths + age + stories + vacant,
## data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -90740 -17215 -1734 13923 167282
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36741.177 5529.365 6.645 5.34e-11 ***
## sqft 96.054 2.979 32.248 < 2e-16 ***
## beds -17786.861 1956.722 -9.090 < 2e-16 ***
## baths -1009.123 2651.334 -0.381 0.7036
## age -331.464 53.565 -6.188 9.36e-10 ***
## stories -5743.812 3206.128 -1.792 0.0736 .
## vacant -9895.778 1938.365 -5.105 4.06e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28030 on 873 degrees of freedom
## Multiple R-squared: 0.7202, Adjusted R-squared: 0.7183
## F-statistic: 374.5 on 6 and 873 DF, p-value: < 2.2e-16
Residuales1 <- residuals(Modelo1)
Resid2 <- Residuales1^2
# Con exponencial
logud1 <- log(Resid2)
var1 <- lm(logud1 ~ sqft + beds + baths + age + stories + vacant, data = Taller_1)
summary(var1)
##
## Call:
## lm(formula = logud1 ~ sqft + beds + baths + age + stories + vacant,
## data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.7235 -0.7729 0.3912 1.3590 4.3669
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.2422397 0.4138533 44.079 < 2e-16 ***
## sqft 0.0017948 0.0002229 8.051 2.68e-15 ***
## beds -0.7210164 0.1464537 -4.923 1.02e-06 ***
## baths 0.1671947 0.1984429 0.843 0.400
## age -0.0011555 0.0040092 -0.288 0.773
## stories -0.1151625 0.2399672 -0.480 0.631
## vacant -0.2104465 0.1450797 -1.451 0.147
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.098 on 873 degrees of freedom
## Multiple R-squared: 0.1277, Adjusted R-squared: 0.1217
## F-statistic: 21.29 on 6 and 873 DF, p-value: < 2.2e-16
w <- 1/exp(fitted(var1))
MCGF1 <-lm(price ~ sqft + beds + baths + age + stories + vacant, weights = w)
summary(MCGF1)
##
## Call:
## lm(formula = price ~ sqft + beds + baths + age + stories + vacant,
## weights = w)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -5.2104 -1.0376 -0.2312 0.9359 7.4328
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 31574.489 4023.337 7.848 1.24e-14 ***
## sqft 69.642 2.705 25.745 < 2e-16 ***
## beds -6791.853 1407.623 -4.825 1.65e-06 ***
## baths -3622.475 1839.187 -1.970 0.0492 *
## age -208.733 37.156 -5.618 2.60e-08 ***
## stories 2963.214 2602.607 1.139 0.2552
## vacant -6300.409 1321.778 -4.767 2.19e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.649 on 873 degrees of freedom
## Multiple R-squared: 0.6406, Adjusted R-squared: 0.6381
## F-statistic: 259.3 on 6 and 873 DF, p-value: < 2.2e-16
# Sin exponencial
w <- (fitted(var1))
MCGF2 <-lm(price ~ sqft + beds + baths + age + stories + vacant, weights = w)
summary(MCGF2)
##
## Call:
## lm(formula = price ~ sqft + beds + baths + age + stories + vacant,
## weights = w)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -427645 -76170 -6604 63157 774179
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37113.182 5655.100 6.563 9.05e-11 ***
## sqft 98.234 2.985 32.905 < 2e-16 ***
## beds -18702.390 1996.782 -9.366 < 2e-16 ***
## baths -952.480 2706.901 -0.352 0.7250
## age -346.535 54.841 -6.319 4.19e-10 ***
## stories -6251.973 3252.402 -1.922 0.0549 .
## vacant -10187.413 1989.117 -5.122 3.73e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 125200 on 873 degrees of freedom
## Multiple R-squared: 0.7272, Adjusted R-squared: 0.7254
## F-statistic: 387.9 on 6 and 873 DF, p-value: < 2.2e-16
encontrar estimaciones de MCG
### punto e
M1 <- log(resid(modelo1)^2)
varreg1 <- lm(M1 ~ sqft + beds + baths + age + stories + vacant, data = Taller_1)
summary(varreg1)
##
## Call:
## lm(formula = M1 ~ sqft + beds + baths + age + stories + vacant,
## data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.7235 -0.7729 0.3912 1.3590 4.3669
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.2422397 0.4138533 44.079 < 2e-16 ***
## sqft 0.0017948 0.0002229 8.051 2.68e-15 ***
## beds -0.7210164 0.1464537 -4.923 1.02e-06 ***
## baths 0.1671947 0.1984429 0.843 0.400
## age -0.0011555 0.0040092 -0.288 0.773
## stories -0.1151625 0.2399672 -0.480 0.631
## vacant -0.2104465 0.1450797 -1.451 0.147
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.098 on 873 degrees of freedom
## Multiple R-squared: 0.1277, Adjusted R-squared: 0.1217
## F-statistic: 21.29 on 6 and 873 DF, p-value: < 2.2e-16
p <- 1/exp(fitted(varreg1))
MCGF <-lm(price ~ sqft + beds + baths + age + stories + vacant, weights = p)
summary(MCGF)
##
## Call:
## lm(formula = price ~ sqft + beds + baths + age + stories + vacant,
## weights = p)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -5.2104 -1.0376 -0.2312 0.9359 7.4328
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 31574.489 4023.337 7.848 1.24e-14 ***
## sqft 69.642 2.705 25.745 < 2e-16 ***
## beds -6791.853 1407.623 -4.825 1.65e-06 ***
## baths -3622.475 1839.187 -1.970 0.0492 *
## age -208.733 37.156 -5.618 2.60e-08 ***
## stories 2963.214 2602.607 1.139 0.2552
## vacant -6300.409 1321.778 -4.767 2.19e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.649 on 873 degrees of freedom
## Multiple R-squared: 0.6406, Adjusted R-squared: 0.6381
## F-statistic: 259.3 on 6 and 873 DF, p-value: < 2.2e-16
ResiMCGF <- residuals(MCGF)
### Prueba de Breusch-Pagan
library(lmtest)
bptest(MCGF,studentize = FALSE)
##
## Breusch-Pagan test
##
## data: MCGF
## BP = 1.2107e+11, df = 6, p-value < 2.2e-16
bptest(MCGF)
##
## studentized Breusch-Pagan test
##
## data: MCGF
## BP = 1.3162e-07, df = 6, p-value = 1
### Errores estandar robustos ###
library(sandwich)
coeftest(Modelo1, vcov. = vcovHC, type = "HC4")
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36741.1769 6785.9475 5.4143 7.956e-08 ***
## sqft 96.0541 6.7059 14.3237 < 2.2e-16 ***
## beds -17786.8611 2977.7770 -5.9732 3.384e-09 ***
## baths -1009.1226 3564.9137 -0.2831 0.7772
## age -331.4641 65.4809 -5.0620 5.061e-07 ***
## stories -5743.8121 4660.1475 -1.2325 0.2181
## vacant -9895.7775 2070.3602 -4.7797 2.059e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(modelo1)
##
## Call:
## lm(formula = price ~ sqft + beds + baths + age + stories + vacant)
##
## Residuals:
## Min 1Q Median 3Q Max
## -90740 -17215 -1734 13923 167282
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36741.177 5529.365 6.645 5.34e-11 ***
## sqft 96.054 2.979 32.248 < 2e-16 ***
## beds -17786.861 1956.722 -9.090 < 2e-16 ***
## baths -1009.123 2651.334 -0.381 0.7036
## age -331.464 53.565 -6.188 9.36e-10 ***
## stories -5743.812 3206.128 -1.792 0.0736 .
## vacant -9895.778 1938.365 -5.105 4.06e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28030 on 873 degrees of freedom
## Multiple R-squared: 0.7202, Adjusted R-squared: 0.7183
## F-statistic: 374.5 on 6 and 873 DF, p-value: < 2.2e-16
predecir nuevamente con valores la primera: sqft1: 1400 y age1: 20; para la segunda: sqft2: 1800 y age2: 20
precio.fact = 31574.489+ 69.642*sqft + -208.733*age
ModeloFP<- lm(precio.fact ~ sqft + age, data =Taller_1)
summary(ModeloFP)
## Warning in summary.lm(ModeloFP): essentially perfect fit: summary may be
## unreliable
##
## Call:
## lm(formula = precio.fact ~ sqft + age, data = Taller_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.146e-11 -8.280e-12 -1.610e-12 5.750e-12 9.245e-10
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.157e+04 5.494e-12 5.747e+15 <2e-16 ***
## sqft 6.964e+01 2.859e-15 2.435e+16 <2e-16 ***
## age -2.087e+02 7.367e-14 -2.833e+15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.412e-11 on 877 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 3.29e+32 on 2 and 877 DF, p-value: < 2.2e-16
tidy(ModeloFP, quick=TRUE)
## Warning in summary.lm(x): essentially perfect fit: summary may be unreliable
## # A tibble: 3 × 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 31574. 5.49e-12 5.75e15 0
## 2 sqft 69.6 2.86e-15 2.44e16 0
## 3 age -209. 7.37e-14 -2.83e15 0
nuevoFP <- data.frame(sqft=c(1400, 1800),
age=c(20))
predict(object=ModeloFP, newdata=nuevoFP, interval = "prediction")
## fit lwr upr
## 1 124898.6 124898.6 124898.6
## 2 152755.4 152755.4 152755.4