This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.
library("readxl")
baca_xls = read_excel("housing_up.xls")
## New names:
## • `` -> `...1`
baca_xls
## # A tibble: 6 × 20
## ...1 Income IncomeP…¹ Crime…² Aband…³ Incom…⁴ NoCen…⁵ Expos…⁶ AirCo…⁷ TwoBa…⁸
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 3914 5 39.6 12.6 2.6 32.3 5.5 52.3 13.9
## 2 2 10817 15 32.4 10 3.3 34.7 5 55.4 16.9
## 3 3 21097 30 26.7 7.1 2.3 28.1 2.4 61.7 24.8
## 4 4 34548 50 23.9 4.1 2.1 21.4 2.1 69.8 39.6
## 5 5 51941 70 21.4 2.3 2.4 14.9 1.4 73.9 51.2
## 6 6 72079 90 19.9 1.2 2 9.6 1 76.7 73.2
## # … with 10 more variables: MotorVehicle <dbl>, TwoVehicles <dbl>,
## # ClothesWasher <dbl>, ClothesDryer <dbl>, Dishwasher <dbl>, Telephone <dbl>,
## # DoctorVisitsUnder7 <dbl>, DoctorVisits7To18 <dbl>,
## # NoDoctorVisitUnder7 <dbl>, NoDoctorVisit7To18 <dbl>, and abbreviated
## # variable names ¹IncomePercentile, ²CrimeProblem, ³AbandonedBuildings,
## # ⁴IncompleteBathroom, ⁵NoCentralHeat, ⁶ExposedWires, ⁷AirConditioning,
## # ⁸TwoBathrooms
library(mosaic)
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
gf_point(height ~ age, data=datasets::Loblolly)
plot(baca_xls$Income,baca_xls$IncomePercentile)
hist(baca_xls$Income)
library(mosaicCalc)
## Loading required package: mosaicCore
##
## Attaching package: 'mosaicCore'
## The following objects are masked from 'package:dplyr':
##
## count, tally
##
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
##
## D
Cherry <- datasets::AirPassengers
AirPassengers
## Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 1949 112 118 132 129 121 135 148 148 136 119 104 118
## 1950 115 126 141 135 125 149 170 170 158 133 114 140
## 1951 145 150 178 163 172 178 199 199 184 162 146 166
## 1952 171 180 193 181 183 218 230 242 209 191 172 194
## 1953 196 196 236 235 229 243 264 272 237 211 180 201
## 1954 204 188 235 227 234 264 302 293 259 229 203 229
## 1955 242 233 267 269 270 315 364 347 312 274 237 278
## 1956 284 277 317 313 318 374 413 405 355 306 271 306
## 1957 315 301 356 348 355 422 465 467 404 347 305 336
## 1958 340 318 362 348 363 435 491 505 404 359 310 337
## 1959 360 342 406 396 420 472 548 559 463 407 362 405
## 1960 417 391 419 461 472 535 622 606 508 461 390 432
as.table.default(Cherry)
## A B C D E F G H I J K L M N O P Q R S T
## 112 118 132 129 121 135 148 148 136 119 104 118 115 126 141 135 125 149 170 170
## U V W X Y Z A1 B1 C1 D1 E1 F1 G1 H1 I1 J1 K1 L1 M1 N1
## 158 133 114 140 145 150 178 163 172 178 199 199 184 162 146 166 171 180 193 181
## O1 P1 Q1 R1 S1 T1 U1 V1 W1 X1 Y1 Z1 A2 B2 C2 D2 E2 F2 G2 H2
## 183 218 230 242 209 191 172 194 196 196 236 235 229 243 264 272 237 211 180 201
## I2 J2 K2 L2 M2 N2 O2 P2 Q2 R2 S2 T2 U2 V2 W2 X2 Y2 Z2 A3 B3
## 204 188 235 227 234 264 302 293 259 229 203 229 242 233 267 269 270 315 364 347
## C3 D3 E3 F3 G3 H3 I3 J3 K3 L3 M3 N3 O3 P3 Q3 R3 S3 T3 U3 V3
## 312 274 237 278 284 277 317 313 318 374 413 405 355 306 271 306 315 301 356 348
## W3 X3 Y3 Z3 A4 B4 C4 D4 E4 F4 G4 H4 I4 J4 K4 L4 M4 N4 O4 P4
## 355 422 465 467 404 347 305 336 340 318 362 348 363 435 491 505 404 359 310 337
## Q4 R4 S4 T4 U4 V4 W4 X4 Y4 Z4 A5 B5 C5 D5 E5 F5 G5 H5 I5 J5
## 360 342 406 396 420 472 548 559 463 407 362 405 417 391 419 461 472 535 622 606
## K5 L5 M5 N5
## 508 461 390 432
Cherry <- datasets::trees
gf_point(Volume ~ Girth, data = Cherry)
g1 = spliner(Volume ~ Girth, data = Cherry)
## Warning in regularize.values(x, y, ties, missing(ties)): collapsing to unique
## 'x' values
g2 = connector(Volume ~ Girth, data = Cherry)
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## collapsing to unique 'x' values
slice_plot(g1(x) ~ x, domain(x = 6:17)) %>%
slice_plot(g2(x) ~ x, color ="red") %>%
gf_point(Volume ~ Girth, data = Cherry) %>%
gf_labs(x = "Girth (inches)")
library(mosaicCalc)
g3 <- smoother(Volume ~ Girth, data = Cherry, span=)
gf_point(Volume~Girth, data=Cherry) %>%
slice_plot(g3(Girth) ~ Girth) %>%
gf_labs(x = "Girth (inches)")
g4 <- smoother(Volume ~ Girth, data=Cherry, span=1.0)
gf_point(Volume~Girth, data = Cherry) %>%
slice_plot(g4(Girth) ~ Girth) %>%
gf_labs(x = "Girth (inches)", y = "Wood volume")
g5 <- smoother(Volume ~ Girth+Height,
data = Cherry, span = 1.0)
gf_point(Height ~ Girth, data = Cherry) %>%
contour_plot(g5(Girth, Height) ~ Girth + Height) %>%
gf_labs(x = "Girth (inches)",
y = "Height (ft)",
title = "Volume (ft^140)")
gf_point(height ~ age, data=datasets::Loblolly)
f1 <- spliner(height ~ age, data = datasets::Loblolly)
## Warning in regularize.values(x, y, ties, missing(ties)): collapsing to unique
## 'x' values
f1(age = 8)
## [1] 20.68193
f2 <- connector(height ~ age, data = datasets::Loblolly)
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## collapsing to unique 'x' values
f2(age = 8)
## [1] 20.54729