Data Cleaning
RPL_THEMES erroneous values
mh_deidv3 %>%
select(age_yrs, PATIENT_GENDER_CD, PATIENT_RACE_DESC, PATIENT_ETHNIC_GROUP_DESC, PATIENT_LANGUAGE_DESC, PATIENT_RELIGION_DESC, PATIENT_MARITAL_STATUS_DESC, PATIENT_STATE_CD, EDU_YEARS, TOBACCO_DESC, depression, anxiety, ptsd, bipolar, body_image, ocd, stress, seasonalAD, panic, any_psych_dx,ST_ABBR, E_TOTPOP, RPL_THEMES, RPL_THEME1, RPL_THEME2, RPL_THEME3, RPL_THEME4) -> exampledf1
exampledf1 %>%
mutate(RPL_THEMES = na_if(RPL_THEMES, "-999")) %>%
mutate(RPL_THEMES = na_if(RPL_THEMES, "0")) %>%
mutate(RPL_THEME1 = na_if(RPL_THEME1, "-999")) %>%
mutate(RPL_THEME1 = na_if(RPL_THEME1, "0")) %>%
mutate(RPL_THEME2 = na_if(RPL_THEME2, "-999")) %>%
mutate(RPL_THEME2 = na_if(RPL_THEME2, "0")) %>%
mutate(RPL_THEME3 = na_if(RPL_THEME3, "-999")) %>%
mutate(RPL_THEME3 = na_if(RPL_THEME3, "0")) %>%
mutate(RPL_THEME4 = na_if(RPL_THEME4, "-999")) %>%
mutate(RPL_THEME4 = na_if(RPL_THEME4, "0")) -> exampledf1NA
Mental Health Dich
exampledf1NA %>% mutate(across(depression:any_psych_dx, ~if_else(.x>0.5, 1, 0),
.names = "{col}_2")) -> exampledf1NADi2
Marital Status
exampledf1NADi2 %>%
mutate(mstat_5 = as_factor(PATIENT_MARITAL_STATUS_DESC),
mstat_5 = fct_recode(mstat_5, div_sep = "DIVORCED",
div_sep = "LEGALLY SEPARATED", widow = "WIDOWED",
married = "MARRIED", unmarried = "SINGLE",
unmarried = "SIGNIFICANT OTHER"),
mstat_5 = fct_relevel(mstat_5, ref = 'married')) %>%
mutate(mstat_5 = na_if(mstat_5, "UNKNOWN")) %>%
mutate(mstat_5 = na_if(mstat_5, "OTHER")) -> exampledf1NADi2MA
Religion
exampledf1NADi2MA %>%
mutate(relig_affil = as_factor(PATIENT_RELIGION_DESC),
relig_affil = fct_recode(relig_affil, yes = "CATHOLIC",
no = "NONE",
yes = "CHRISTIAN", yes = "LUTHERAN",
yes = "RUSSIAN ORTHODOX",
yes = "PROTESTANT", yes = "BAPTIST",
yes = "METHODIST", yes = "PRESBYTERIAN",
yes = "NON-DENOMINATIONAL", yes = "JEWISH",
yes = "MUSLIM", yes = "OTHER",
yes = "EPISCOPALIAN", yes = "PENTECOSTAL",
no = "AGNOSTIC", no = "ATHEIST",
yes = "JEHOVAH'S WITNESS", yes = "HINDU",
yes = "GREEK ORTHODOX", yes = "CHURCH OF JESUS CHRIST OF LATTER-DAY SAINTS", yes = "BAHAI", no = "SPIRITUAL", yes = "CHURCH OF CHRIST",
yes = "SEVENTH DAY ADVENTIST", yes = "APOSTOLIC", yes = "BUDDHIST", yes = "NAZARENE", yes = "CONGREGATIONAL", yes = "UNITED CHURCH OF CHR", yes = "REFORMED", yes = "PAGAN", yes = "JAIN", yes = "ASSEMBLY OF GOD", yes = "REORG CHR OF LAT DAY", yes = "QUAKER", yes = "UNITARIAN UNIVERSALIST", yes = "MENNONITE", yes = "FREE METHODIST", yes = "NATIVE AMER SPIRITL", yes = "WICCAN", yes = "ORTHODOX", yes = "SALVATION ARMY", yes = "DISCIPLES OF CHRIST", yes = "AFRICAN METHODIST EP", yes = "SIKH", yes = "CHURCH OF GOD", yes = "TAOIST", yes = "ANGLICAN"),
relig_affil = fct_relevel(relig_affil, ref = 'yes')) %>%
mutate(relig_affil = na_if(relig_affil, "UNKNOWN")) %>%
mutate(relig_affil = na_if(relig_affil, "PATIENT REFUSED")) -> exampledf1NADi2MARel
Race
exampledf1NADi2MARel %>%
mutate(race_5 = as_factor(PATIENT_RACE_DESC),
race_5 = fct_recode(race_5, Other = "OTHER",
Other = "UNKNOWN", Other = "CHOOSE NOT TO DISCLOSE",
ASIAN = "NATIVE HAWAIIAN AND OTHER PACIFIC ISLANDER",
Other = "MIDDLE EASTERN/NORTH AFRICAN",
ASIAN = "ASIAN INDIAN", ASIAN = "OTHER ASIAN",
ASIAN = "JAPANESE", ASIAN = "KOREAN", ASIAN = "FILIPINO",
ASIAN = "CHINESE"),
race_5 = fct_relevel(race_5, ref = 'WHITE OR CAUCASIAN')) -> exampledf1NADi2MARelRa
Gender
exampledf1NADi2MARelRa %>%
mutate(gender = as_factor(PATIENT_GENDER_CD),
gender = fct_recode(gender, male = "M", female = "F"),
gender = fct_relevel(gender, ref = "male")) -> exampledf1NADi2MARelRaG
Language
exampledf1NADi2MARelRaG %>%
mutate(lang_3 = as_factor(PATIENT_LANGUAGE_DESC),
lang_3 = fct_recode(lang_3, English = "ENGLISH",
Other = "ARABIC", Other = "JAPANESE",
Other = "CHINESE, MANDARIN",
Other = "KOREAN", Other = "SIGN LANGUAGE",
Other = "RUSSIAN", Other = "SPANISH", Other = "ARMENIAN",
Other = "TURKISH", Other = "HINDI", Other = "BENGALI", Other = "FARSI; PERSIAN", Other = "ALBANIAN", Other = "HMONG", Other = "ROMANIAN",
Other = "PUNJABI", Other = "CROATIAN", Other = "CHALDEAN",
Other = "BURMESE", Other = "PORTUGUESE",
Other = "TAGALOG", Other = "FRENCH",
Other = "GERMAN", Other = "CHINESE, CANTONESE",
Other = "BOSNIAN", Other = "URDU",
Other = "UNKNOWN"),
lang_3 = fct_relevel(lang_3, ref = 'English')) -> exampledf1NADi2MARelRaGL
Ethnicity
exampledf1NADi2MARelRaGL %>%
mutate(ethnic_3 = as_factor(PATIENT_ETHNIC_GROUP_DESC)) %>%
mutate(ethnic_3 = na_if(ethnic_3, "UNKNOWN")) %>%
mutate(ethnic_3 = na_if(ethnic_3, "CHOOSE NOT TO DISCLOSE")) -> exampledf1NADi2MARelRaGLEth
Codebook
exampledf1NADi2MARelRaGLEthT %>%
select(age_yrs, gender, race_5, ethnic_3, lang_3, relig_affil, mstat_5, PATIENT_STATE_CD, EDU_YEARS, tobac_4, depression_2, anxiety_2, ptsd_2, bipolar_2, body_image_2, ocd_2, seasonalAD_2, panic_2, any_psych_dx_2, E_TOTPOP, RPL_THEMES, RPL_THEME1, RPL_THEME2, RPL_THEME3, RPL_THEME4) -> mh_clean1
print(dfSummary(mh_clean1), method = 'render')
Patient Characteristics
Baseline Characteristics
mh_clean1 %>%
select(age_yrs, gender, race_5, ethnic_3, lang_3, relig_affil, mstat_5, tobac_4, depression_2, anxiety_2, ptsd_2, any_psych_dx_2, RPL_THEMES, RPL_THEME1, RPL_THEME2, RPL_THEME3, RPL_THEME4) -> baseline
baseline %>% tbl_summary(label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", depression_2 ~ "Depression", anxiety_2 ~ "Anxiety", ptsd_2 ~ "PTSD", any_psych_dx_2 ~ "Any Psychiatric Diagnosis", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", tobac_4 ~ "Tobacco Use"),
statistic = list(all_continuous() ~ "{mean} ({sd})"),
missing_text = "(Missing)")
| Characteristic |
N = 15,245 |
| Age |
49 (19) |
| Gender |
|
| male |
6,973 (46%) |
| female |
8,272 (54%) |
| Race |
|
| WHITE OR CAUCASIAN |
13,230 (87%) |
| BLACK OR AFRICAN AMERICAN |
946 (6.2%) |
| Other |
630 (4.1%) |
| ASIAN |
383 (2.5%) |
| AMERICAN INDIAN AND ALASKA NATIVE |
56 (0.4%) |
| Ethnicity |
|
| NON-HISPANIC |
14,401 (98%) |
| UNKNOWN |
0 (0%) |
| CHOOSE NOT TO DISCLOSE |
0 (0%) |
| HISPANIC |
302 (2.1%) |
| (Missing) |
542 |
| English Speaking |
|
| English |
15,081 (99%) |
| Other |
164 (1.1%) |
| Any Religious Affiliation |
|
| yes |
8,211 (57%) |
| no |
6,085 (43%) |
| PATIENT REFUSED |
0 (0%) |
| UNKNOWN |
0 (0%) |
| (Missing) |
949 |
| Marital Status |
|
| married |
6,198 (52%) |
| UNKNOWN |
0 (0%) |
| unmarried |
4,997 (42%) |
| div_sep |
507 (4.2%) |
| widow |
307 (2.6%) |
| OTHER |
0 (0%) |
| (Missing) |
3,236 |
| Tobacco Use |
|
| NEVER |
8,173 (56%) |
| QUIT |
4,439 (31%) |
| Yes |
1,890 (13%) |
| NOT ASKED |
0 (0%) |
| (Missing) |
743 |
| Depression |
2,606 (17%) |
| Anxiety |
2,811 (18%) |
| PTSD |
160 (1.0%) |
| Any Psychiatric Diagnosis |
4,316 (28%) |
| Total SVI |
0.37 (0.26) |
| (Missing) |
288 |
| Soceioeconomic Status |
0.35 (0.26) |
| (Missing) |
338 |
| Household Composition |
0.40 (0.27) |
| (Missing) |
287 |
| Minority Status and Language |
0.48 (0.29) |
| (Missing) |
279 |
| Housing and Transportation |
0.44 (0.29) |
| (Missing) |
310 |
Baseline Characteristics by Depression
baseline %>% tbl_summary(by = depression_2,
statistic = list(all_continuous() ~ "{mean} ({sd})"),
label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", anxiety_2 ~ "Anxiety", ptsd_2 ~ "PTSD", any_psych_dx_2 ~ "Any Psychiatric Diagnosis", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", tobac_4 ~ "Tobacco Use"),
missing_text = "(Missing)"
) %>% add_p()
There was an error in 'add_p()/add_difference()' for variable 'tobac_4', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 2L, 3L, 1L, 2L, 1L, 2L, : FEXACT error 6. LDKEY=531 is too small for this problem,
(ii := key2[itp=345] = 27473220, ldstp=15930)
Try increasing the size of the workspace and possibly 'mult'
| Characteristic |
0, N = 12,639 |
1, N = 2,606 |
p-value |
| Age |
49 (20) |
51 (18) |
<0.001 |
| Gender |
|
|
<0.001 |
| male |
6,090 (48%) |
883 (34%) |
|
| female |
6,549 (52%) |
1,723 (66%) |
|
| Race |
|
|
<0.001 |
| WHITE OR CAUCASIAN |
10,927 (86%) |
2,303 (88%) |
|
| BLACK OR AFRICAN AMERICAN |
778 (6.2%) |
168 (6.4%) |
|
| Other |
544 (4.3%) |
86 (3.3%) |
|
| ASIAN |
347 (2.7%) |
36 (1.4%) |
|
| AMERICAN INDIAN AND ALASKA NATIVE |
43 (0.3%) |
13 (0.5%) |
|
| Ethnicity |
|
|
0.5 |
| NON-HISPANIC |
11,905 (98%) |
2,496 (98%) |
|
| UNKNOWN |
0 (0%) |
0 (0%) |
|
| CHOOSE NOT TO DISCLOSE |
0 (0%) |
0 (0%) |
|
| HISPANIC |
255 (2.1%) |
47 (1.8%) |
|
| (Missing) |
479 |
63 |
|
| English Speaking |
|
|
0.002 |
| English |
12,488 (99%) |
2,593 (100%) |
|
| Other |
151 (1.2%) |
13 (0.5%) |
|
| Any Religious Affiliation |
|
|
0.2 |
| yes |
6,740 (57%) |
1,471 (59%) |
|
| no |
5,043 (43%) |
1,042 (41%) |
|
| PATIENT REFUSED |
0 (0%) |
0 (0%) |
|
| UNKNOWN |
0 (0%) |
0 (0%) |
|
| (Missing) |
856 |
93 |
|
| Marital Status |
|
|
<0.001 |
| married |
5,228 (41%) |
970 (37%) |
|
| unknown |
2,727 (22%) |
509 (20%) |
|
| unmarried |
4,095 (32%) |
902 (35%) |
|
| div_sep |
362 (2.9%) |
145 (5.6%) |
|
| widow |
227 (1.8%) |
80 (3.1%) |
|
| Tobacco Use |
|
|
|
| NEVER |
6,990 (59%) |
1,183 (46%) |
|
| QUIT |
3,499 (29%) |
940 (37%) |
|
| Yes |
1,459 (12%) |
431 (17%) |
|
| NOT ASKED |
0 (0%) |
0 (0%) |
|
| (Missing) |
691 |
52 |
|
| Anxiety |
1,320 (10%) |
1,491 (57%) |
<0.001 |
| PTSD |
54 (0.4%) |
106 (4.1%) |
<0.001 |
| Any Psychiatric Diagnosis |
1,710 (14%) |
2,606 (100%) |
<0.001 |
| Total SVI |
0.37 (0.26) |
0.39 (0.26) |
<0.001 |
| (Missing) |
261 |
27 |
|
| Soceioeconomic Status |
0.35 (0.25) |
0.37 (0.26) |
<0.001 |
| (Missing) |
301 |
37 |
|
| Household Composition |
0.39 (0.27) |
0.40 (0.27) |
>0.9 |
| (Missing) |
260 |
27 |
|
| Minority Status and Language |
0.48 (0.28) |
0.49 (0.29) |
0.026 |
| (Missing) |
252 |
27 |
|
| Housing and Transportation |
0.44 (0.29) |
0.45 (0.29) |
0.004 |
| (Missing) |
278 |
32 |
|
Baseline Characteristics By Anxiety
baseline %>% tbl_summary(by = anxiety_2,
statistic = list(all_continuous() ~ "{mean} ({sd})"),
label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", depression_2 ~ "Depression", ptsd_2 ~ "PTSD", any_psych_dx_2 ~ "Any Psychiatric Diagnosis", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", tobac_4 ~ "Tobacco Use"),
missing_text = "(Missing)"
) %>% add_p()
There was an error in 'add_p()/add_difference()' for variable 'tobac_4', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 2L, 3L, 1L, 2L, 1L, 2L, : FEXACT error 6. LDKEY=531 is too small for this problem,
(ii := key2[itp=1030] = 30145890, ldstp=15930)
Try increasing the size of the workspace and possibly 'mult'
| Characteristic |
0, N = 12,434 |
1, N = 2,811 |
p-value |
| Age |
50 (20) |
47 (18) |
<0.001 |
| Gender |
|
|
<0.001 |
| male |
6,058 (49%) |
915 (33%) |
|
| female |
6,376 (51%) |
1,896 (67%) |
|
| Race |
|
|
<0.001 |
| WHITE OR CAUCASIAN |
10,731 (86%) |
2,499 (89%) |
|
| BLACK OR AFRICAN AMERICAN |
792 (6.4%) |
154 (5.5%) |
|
| Other |
527 (4.2%) |
103 (3.7%) |
|
| ASIAN |
342 (2.8%) |
41 (1.5%) |
|
| AMERICAN INDIAN AND ALASKA NATIVE |
42 (0.3%) |
14 (0.5%) |
|
| Ethnicity |
|
|
0.8 |
| NON-HISPANIC |
11,713 (98%) |
2,688 (98%) |
|
| UNKNOWN |
0 (0%) |
0 (0%) |
|
| CHOOSE NOT TO DISCLOSE |
0 (0%) |
0 (0%) |
|
| HISPANIC |
248 (2.1%) |
54 (2.0%) |
|
| (Missing) |
473 |
69 |
|
| English Speaking |
|
|
<0.001 |
| English |
12,280 (99%) |
2,801 (100%) |
|
| Other |
154 (1.2%) |
10 (0.4%) |
|
| Any Religious Affiliation |
|
|
0.9 |
| yes |
6,652 (57%) |
1,559 (58%) |
|
| no |
4,935 (43%) |
1,150 (42%) |
|
| PATIENT REFUSED |
0 (0%) |
0 (0%) |
|
| UNKNOWN |
0 (0%) |
0 (0%) |
|
| (Missing) |
847 |
102 |
|
| Marital Status |
|
|
<0.001 |
| married |
5,162 (42%) |
1,036 (37%) |
|
| unknown |
2,664 (21%) |
572 (20%) |
|
| unmarried |
3,990 (32%) |
1,007 (36%) |
|
| div_sep |
372 (3.0%) |
135 (4.8%) |
|
| widow |
246 (2.0%) |
61 (2.2%) |
|
| Tobacco Use |
|
|
|
| NEVER |
6,752 (58%) |
1,421 (51%) |
|
| QUIT |
3,540 (30%) |
899 (33%) |
|
| Yes |
1,447 (12%) |
443 (16%) |
|
| NOT ASKED |
0 (0%) |
0 (0%) |
|
| (Missing) |
695 |
48 |
|
| Depression |
1,115 (9.0%) |
1,491 (53%) |
<0.001 |
| PTSD |
60 (0.5%) |
100 (3.6%) |
<0.001 |
| Any Psychiatric Diagnosis |
1,505 (12%) |
2,811 (100%) |
<0.001 |
| Total SVI |
0.37 (0.26) |
0.36 (0.25) |
0.088 |
| (Missing) |
256 |
32 |
|
| Soceioeconomic Status |
0.35 (0.26) |
0.34 (0.25) |
0.009 |
| (Missing) |
296 |
42 |
|
| Household Composition |
0.40 (0.27) |
0.38 (0.26) |
<0.001 |
| (Missing) |
255 |
32 |
|
| Minority Status and Language |
0.48 (0.28) |
0.49 (0.29) |
0.004 |
| (Missing) |
247 |
32 |
|
| Housing and Transportation |
0.44 (0.29) |
0.44 (0.28) |
0.7 |
| (Missing) |
273 |
37 |
|
Baseline Characteristics by Any Psych Dx
baseline %>% tbl_summary(by = any_psych_dx_2,
statistic = list(all_continuous() ~ "{mean} ({sd})"),
label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", depression_2 ~ "Depression", ptsd_2 ~ "PTSD", anxiety_2 ~ "Anxiety", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", tobac_4 ~ "Tobacco Use", RPL_THEME4 ~ "Housing and Transportation"),
missing_text = "(Missing)"
) %>% add_p()
There was an error in 'add_p()/add_difference()' for variable 'tobac_4', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 2L, 3L, 1L, 2L, 1L, 2L, : FEXACT error 6. LDKEY=531 is too small for this problem,
(ii := key2[itp=1047] = 39726216, ldstp=15930)
Try increasing the size of the workspace and possibly 'mult'
| Characteristic |
0, N = 10,929 |
1, N = 4,316 |
p-value |
| Age |
49 (20) |
49 (18) |
0.7 |
| Gender |
|
|
<0.001 |
| male |
5,444 (50%) |
1,529 (35%) |
|
| female |
5,485 (50%) |
2,787 (65%) |
|
| Race |
|
|
<0.001 |
| WHITE OR CAUCASIAN |
9,433 (86%) |
3,797 (88%) |
|
| BLACK OR AFRICAN AMERICAN |
678 (6.2%) |
268 (6.2%) |
|
| Other |
475 (4.3%) |
155 (3.6%) |
|
| ASIAN |
307 (2.8%) |
76 (1.8%) |
|
| AMERICAN INDIAN AND ALASKA NATIVE |
36 (0.3%) |
20 (0.5%) |
|
| Ethnicity |
|
|
0.7 |
| NON-HISPANIC |
10,280 (98%) |
4,121 (98%) |
|
| UNKNOWN |
0 (0%) |
0 (0%) |
|
| CHOOSE NOT TO DISCLOSE |
0 (0%) |
0 (0%) |
|
| HISPANIC |
219 (2.1%) |
83 (2.0%) |
|
| (Missing) |
430 |
112 |
|
| English Speaking |
|
|
<0.001 |
| English |
10,787 (99%) |
4,294 (99%) |
|
| Other |
142 (1.3%) |
22 (0.5%) |
|
| Any Religious Affiliation |
|
|
0.3 |
| yes |
5,804 (57%) |
2,407 (58%) |
|
| no |
4,350 (43%) |
1,735 (42%) |
|
| PATIENT REFUSED |
0 (0%) |
0 (0%) |
|
| UNKNOWN |
0 (0%) |
0 (0%) |
|
| (Missing) |
775 |
174 |
|
| Marital Status |
|
|
<0.001 |
| married |
4,553 (42%) |
1,645 (38%) |
|
| unknown |
2,376 (22%) |
860 (20%) |
|
| unmarried |
3,498 (32%) |
1,499 (35%) |
|
| div_sep |
304 (2.8%) |
203 (4.7%) |
|
| widow |
198 (1.8%) |
109 (2.5%) |
|
| Tobacco Use |
|
|
|
| NEVER |
6,064 (59%) |
2,109 (50%) |
|
| QUIT |
2,988 (29%) |
1,451 (34%) |
|
| Yes |
1,222 (12%) |
668 (16%) |
|
| NOT ASKED |
0 (0%) |
0 (0%) |
|
| (Missing) |
655 |
88 |
|
| Depression |
0 (0%) |
2,606 (60%) |
<0.001 |
| Anxiety |
0 (0%) |
2,811 (65%) |
<0.001 |
| PTSD |
0 (0%) |
160 (3.7%) |
<0.001 |
| Total SVI |
0.37 (0.26) |
0.38 (0.26) |
0.3 |
| (Missing) |
236 |
52 |
|
| Soceioeconomic Status |
0.35 (0.25) |
0.35 (0.26) |
0.5 |
| (Missing) |
273 |
65 |
|
| Household Composition |
0.40 (0.27) |
0.39 (0.27) |
0.040 |
| (Missing) |
236 |
51 |
|
| Minority Status and Language |
0.47 (0.28) |
0.49 (0.29) |
0.002 |
| (Missing) |
228 |
51 |
|
| Housing and Transportation |
0.44 (0.29) |
0.44 (0.28) |
0.2 |
| (Missing) |
251 |
59 |
|
Prelim Models
Depression + RPL_THEMES
model1a <- glm(depression_2 ~ + race_5 + lang_3 + relig_affil + age_yrs
+ gender + ethnic_3 + tobac_4 + RPL_THEMES,
family = "binomial",
data = mh_clean1)
summary(model1a)
Call:
glm(formula = depression_2 ~ +race_5 + lang_3 + relig_affil +
age_yrs + gender + ethnic_3 + tobac_4 + RPL_THEMES, family = "binomial",
data = mh_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.9599 -0.6474 -0.6083 -0.4750 2.4939
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.189351 0.086970 -25.174 <2e-16 ***
race_5BLACK OR AFRICAN AMERICAN -0.012107 0.095732 -0.126 0.8994
race_5Other -0.141798 0.152837 -0.928 0.3535
race_5ASIAN -0.368055 0.186422 -1.974 0.0483 *
race_5AMERICAN INDIAN AND ALASKA NATIVE 0.283480 0.337460 0.840 0.4009
lang_3Other -0.533237 0.312910 -1.704 0.0884 .
relig_affilno -0.013350 0.047884 -0.279 0.7804
age_yrs 0.001306 0.001316 0.993 0.3208
genderfemale 0.599821 0.047966 12.505 <2e-16 ***
ethnic_3HISPANIC 0.046810 0.175318 0.267 0.7895
tobac_4QUIT 0.448447 0.054477 8.232 <2e-16 ***
tobac_4Yes 0.571420 0.067302 8.490 <2e-16 ***
RPL_THEMES 0.160805 0.092026 1.747 0.0806 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 12438 on 13063 degrees of freedom
Residual deviance: 12131 on 13051 degrees of freedom
(2181 observations deleted due to missingness)
AIC: 12157
Number of Fisher Scoring iterations: 4
broom::glance(model1a)
broom::tidy(model1a, exponentiate = TRUE)
model_performance(model1a)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
--------------------------------------------------------------------------------------------------
12157.277 | 12254.486 | 0.023 | 0.382 | 0.964 | 0.464 | -Inf | 7.657e-05 | 0.708
tbl_regression(model1a, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEMES ~ "Total SVI", tobac_4 ~ "Tobacco Use"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| Race |
|
|
|
| WHITE OR CAUCASIAN |
— |
— |
|
| BLACK OR AFRICAN AMERICAN |
0.99 |
0.82, 1.19 |
0.9 |
| Other |
0.87 |
0.64, 1.16 |
0.4 |
| ASIAN |
0.69 |
0.47, 0.98 |
0.048 |
| AMERICAN INDIAN AND ALASKA NATIVE |
1.33 |
0.66, 2.50 |
0.4 |
| English Speaking |
|
|
|
| English |
— |
— |
|
| Other |
0.59 |
0.30, 1.04 |
0.088 |
| Any Religious Affiliation |
|
|
|
| yes |
— |
— |
|
| no |
0.99 |
0.90, 1.08 |
0.8 |
| Age |
1.00 |
1.00, 1.00 |
0.3 |
| Gender |
|
|
|
| male |
— |
— |
|
| female |
1.82 |
1.66, 2.00 |
<0.001 |
| Ethnicity |
|
|
|
| NON-HISPANIC |
— |
— |
|
| HISPANIC |
1.05 |
0.74, 1.46 |
0.8 |
| Tobacco Use |
|
|
|
| NEVER |
— |
— |
|
| QUIT |
1.57 |
1.41, 1.74 |
<0.001 |
| Yes |
1.77 |
1.55, 2.02 |
<0.001 |
| Total SVI |
1.17 |
0.98, 1.41 |
0.081 |
NA
Depression + RPL_THEMESx4
model1b <- glm(depression_2 ~ lang_3 + relig_affil + age_yrs + race_5
+ tobac_4 + gender + ethnic_3 + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 + RPL_THEME4,
family = "binomial",
data = mh_clean1)
summary(model1b)
Call:
glm(formula = depression_2 ~ lang_3 + relig_affil + age_yrs +
race_5 + tobac_4 + gender + ethnic_3 + RPL_THEME1 + RPL_THEME2 +
RPL_THEME3 + RPL_THEME4, family = "binomial", data = mh_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.9772 -0.6567 -0.5968 -0.4626 2.5622
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.285510 0.099863 -22.886 < 2e-16 ***
lang_3Other -0.630681 0.314163 -2.007 0.04470 *
relig_affilno -0.009748 0.048102 -0.203 0.83940
age_yrs 0.001732 0.001323 1.308 0.19075
race_5BLACK OR AFRICAN AMERICAN -0.068330 0.097496 -0.701 0.48340
race_5Other -0.168300 0.153101 -1.099 0.27165
race_5ASIAN -0.451993 0.188107 -2.403 0.01627 *
race_5AMERICAN INDIAN AND ALASKA NATIVE 0.308150 0.339114 0.909 0.36351
tobac_4QUIT 0.456258 0.054880 8.314 < 2e-16 ***
tobac_4Yes 0.575558 0.067870 8.480 < 2e-16 ***
genderfemale 0.601136 0.048165 12.481 < 2e-16 ***
ethnic_3HISPANIC 0.035639 0.175267 0.203 0.83887
RPL_THEME1 0.338928 0.132086 2.566 0.01029 *
RPL_THEME2 -0.354265 0.114493 -3.094 0.00197 **
RPL_THEME3 0.218637 0.084902 2.575 0.01002 *
RPL_THEME4 0.109498 0.096162 1.139 0.25483
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 12369 on 12995 degrees of freedom
Residual deviance: 12042 on 12980 degrees of freedom
(2249 observations deleted due to missingness)
AIC: 12074
Number of Fisher Scoring iterations: 4
broom::glance(model1b)
broom::tidy(model1b, exponentiate = TRUE)
model_performance(model1b)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
--------------------------------------------------------------------------------------------------
12074.247 | 12193.806 | 0.025 | 0.382 | 0.963 | 0.463 | -Inf | 7.909e-05 | 0.709
tbl_regression(model1b, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", tobac_4 ~ "Tobacco Use"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| English Speaking |
|
|
|
| English |
— |
— |
|
| Other |
0.53 |
0.27, 0.95 |
0.045 |
| Any Religious Affiliation |
|
|
|
| yes |
— |
— |
|
| no |
0.99 |
0.90, 1.09 |
0.8 |
| Age |
1.00 |
1.00, 1.00 |
0.2 |
| Race |
|
|
|
| WHITE OR CAUCASIAN |
— |
— |
|
| BLACK OR AFRICAN AMERICAN |
0.93 |
0.77, 1.13 |
0.5 |
| Other |
0.85 |
0.62, 1.13 |
0.3 |
| ASIAN |
0.64 |
0.43, 0.91 |
0.016 |
| AMERICAN INDIAN AND ALASKA NATIVE |
1.36 |
0.67, 2.57 |
0.4 |
| Tobacco Use |
|
|
|
| NEVER |
— |
— |
|
| QUIT |
1.58 |
1.42, 1.76 |
<0.001 |
| Yes |
1.78 |
1.56, 2.03 |
<0.001 |
| Gender |
|
|
|
| male |
— |
— |
|
| female |
1.82 |
1.66, 2.01 |
<0.001 |
| Ethnicity |
|
|
|
| NON-HISPANIC |
— |
— |
|
| HISPANIC |
1.04 |
0.73, 1.45 |
0.8 |
| Soceioeconomic Status |
1.40 |
1.08, 1.82 |
0.010 |
| Household Composition |
0.70 |
0.56, 0.88 |
0.002 |
| Minority Status and Language |
1.24 |
1.05, 1.47 |
0.010 |
| Housing and Transportation |
1.12 |
0.92, 1.35 |
0.3 |
Anxiety + RPL_THEMES
model2a <- glm(anxiety_2 ~ lang_3 + age_yrs + race_5 + relig_affil
+ tobac_4 + gender + ethnic_3 + RPL_THEMES,
family = "binomial",
data = mh_clean1)
summary(model2a)
Call:
glm(formula = anxiety_2 ~ lang_3 + age_yrs + race_5 + relig_affil +
tobac_4 + gender + ethnic_3 + RPL_THEMES, family = "binomial",
data = mh_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.1018 -0.7241 -0.5830 -0.4602 2.5735
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.346818 0.080938 -16.640 < 2e-16 ***
lang_3Other -0.874349 0.354352 -2.467 0.013608 *
age_yrs -0.011502 0.001295 -8.879 < 2e-16 ***
race_5BLACK OR AFRICAN AMERICAN -0.177295 0.097635 -1.816 0.069387 .
race_5Other 0.068542 0.139035 0.493 0.622024
race_5ASIAN -0.629592 0.188770 -3.335 0.000852 ***
race_5AMERICAN INDIAN AND ALASKA NATIVE 0.267240 0.330068 0.810 0.418142
relig_affilno -0.053691 0.046441 -1.156 0.247636
tobac_4QUIT 0.402107 0.054218 7.417 1.2e-13 ***
tobac_4Yes 0.511390 0.066184 7.727 1.1e-14 ***
genderfemale 0.727003 0.047142 15.421 < 2e-16 ***
ethnic_3HISPANIC -0.034620 0.166894 -0.207 0.835669
RPL_THEMES -0.233620 0.090939 -2.569 0.010200 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 12977 on 13063 degrees of freedom
Residual deviance: 12579 on 13051 degrees of freedom
(2181 observations deleted due to missingness)
AIC: 12605
Number of Fisher Scoring iterations: 4
broom::glance(model2a)
broom::tidy(model2a, exponentiate = TRUE)
model_performance(model2a)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
--------------------------------------------------------------------------------------------------
12604.858 | 12702.067 | 0.030 | 0.392 | 0.982 | 0.481 | -Inf | 7.664e-05 | 0.693
tbl_regression(model2a, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEMES ~ "Total SVI", tobac_4 ~ "Tobacco Use"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| English Speaking |
|
|
|
| English |
— |
— |
|
| Other |
0.42 |
0.19, 0.79 |
0.014 |
| Age |
0.99 |
0.99, 0.99 |
<0.001 |
| Race |
|
|
|
| WHITE OR CAUCASIAN |
— |
— |
|
| BLACK OR AFRICAN AMERICAN |
0.84 |
0.69, 1.01 |
0.069 |
| Other |
1.07 |
0.81, 1.40 |
0.6 |
| ASIAN |
0.53 |
0.36, 0.76 |
<0.001 |
| AMERICAN INDIAN AND ALASKA NATIVE |
1.31 |
0.66, 2.43 |
0.4 |
| Any Religious Affiliation |
|
|
|
| yes |
— |
— |
|
| no |
0.95 |
0.87, 1.04 |
0.2 |
| Tobacco Use |
|
|
|
| NEVER |
— |
— |
|
| QUIT |
1.49 |
1.34, 1.66 |
<0.001 |
| Yes |
1.67 |
1.46, 1.90 |
<0.001 |
| Gender |
|
|
|
| male |
— |
— |
|
| female |
2.07 |
1.89, 2.27 |
<0.001 |
| Ethnicity |
|
|
|
| NON-HISPANIC |
— |
— |
|
| HISPANIC |
0.97 |
0.69, 1.33 |
0.8 |
| Total SVI |
0.79 |
0.66, 0.95 |
0.010 |
Anxiety + RPL_THEMESx4
model2b <- glm(anxiety_2 ~ lang_3 + age_yrs + race_5 + relig_affil
+ tobac_4 + gender + ethnic_3 + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 + RPL_THEME4,
family = "binomial",
data = mh_clean1)
summary(model2b)
Call:
glm(formula = anxiety_2 ~ lang_3 + age_yrs + race_5 + relig_affil +
tobac_4 + gender + ethnic_3 + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 +
RPL_THEME4, family = "binomial", data = mh_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.1402 -0.7221 -0.5811 -0.4526 2.6011
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.464848 0.094004 -15.583 < 2e-16 ***
lang_3Other -0.955461 0.355321 -2.689 0.007166 **
age_yrs -0.011236 0.001302 -8.629 < 2e-16 ***
race_5BLACK OR AFRICAN AMERICAN -0.235553 0.099262 -2.373 0.017642 *
race_5Other 0.039657 0.139322 0.285 0.775920
race_5ASIAN -0.754171 0.190326 -3.963 7.42e-05 ***
race_5AMERICAN INDIAN AND ALASKA NATIVE 0.297927 0.332590 0.896 0.370371
relig_affilno -0.047082 0.046659 -1.009 0.312946
tobac_4QUIT 0.422736 0.054662 7.734 1.05e-14 ***
tobac_4Yes 0.536588 0.066807 8.032 9.59e-16 ***
genderfemale 0.734696 0.047372 15.509 < 2e-16 ***
ethnic_3HISPANIC -0.041189 0.166887 -0.247 0.805058
RPL_THEME1 -0.197443 0.130341 -1.515 0.129818
RPL_THEME2 -0.255494 0.112778 -2.265 0.023484 *
RPL_THEME3 0.313945 0.082664 3.798 0.000146 ***
RPL_THEME4 0.051412 0.094157 0.546 0.585054
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 12908 on 12995 degrees of freedom
Residual deviance: 12482 on 12980 degrees of freedom
(2249 observations deleted due to missingness)
AIC: 12514
Number of Fisher Scoring iterations: 4
broom::glance(model2b)
broom::tidy(model2b, exponentiate = TRUE)
model_performance(model2b)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
--------------------------------------------------------------------------------------------------
12514.377 | 12633.935 | 0.033 | 0.391 | 0.981 | 0.480 | -Inf | 8.020e-05 | 0.694
tbl_regression(model2b, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", tobac_4 ~ "Tobacco Use", relig_affil ~ "Any Religious Affiliation"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| English Speaking |
|
|
|
| English |
— |
— |
|
| Other |
0.38 |
0.18, 0.73 |
0.007 |
| Age |
0.99 |
0.99, 0.99 |
<0.001 |
| Race |
|
|
|
| WHITE OR CAUCASIAN |
— |
— |
|
| BLACK OR AFRICAN AMERICAN |
0.79 |
0.65, 0.96 |
0.018 |
| Other |
1.04 |
0.79, 1.36 |
0.8 |
| ASIAN |
0.47 |
0.32, 0.67 |
<0.001 |
| AMERICAN INDIAN AND ALASKA NATIVE |
1.35 |
0.68, 2.52 |
0.4 |
| Any Religious Affiliation |
|
|
|
| yes |
— |
— |
|
| no |
0.95 |
0.87, 1.05 |
0.3 |
| Tobacco Use |
|
|
|
| NEVER |
— |
— |
|
| QUIT |
1.53 |
1.37, 1.70 |
<0.001 |
| Yes |
1.71 |
1.50, 1.95 |
<0.001 |
| Gender |
|
|
|
| male |
— |
— |
|
| female |
2.08 |
1.90, 2.29 |
<0.001 |
| Ethnicity |
|
|
|
| NON-HISPANIC |
— |
— |
|
| HISPANIC |
0.96 |
0.69, 1.32 |
0.8 |
| Soceioeconomic Status |
0.82 |
0.64, 1.06 |
0.13 |
| Household Composition |
0.77 |
0.62, 0.97 |
0.023 |
| Minority Status and Language |
1.37 |
1.16, 1.61 |
<0.001 |
| Housing and Transportation |
1.05 |
0.88, 1.27 |
0.6 |
Any Psych + RPL THEMES
model4a <- glm(any_psych_dx_2 ~ relig_affil + race_5 + lang_3 +
+ tobac_4 + age_yrs + gender + ethnic_3 + RPL_THEMES,
family = "binomial",
data = mh_clean1)
summary(model4a)
Call:
glm(formula = any_psych_dx_2 ~ relig_affil + race_5 + lang_3 +
+tobac_4 + age_yrs + gender + ethnic_3 + RPL_THEMES, family = "binomial",
data = mh_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.2110 -0.8732 -0.7174 1.3297 2.1660
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.172352 0.071002 -16.511 < 2e-16 ***
relig_affilno -0.038905 0.040379 -0.964 0.335295
race_5BLACK OR AFRICAN AMERICAN -0.028279 0.082003 -0.345 0.730203
race_5Other 0.029307 0.122218 0.240 0.810491
race_5ASIAN -0.355153 0.145493 -2.441 0.014646 *
race_5AMERICAN INDIAN AND ALASKA NATIVE 0.206501 0.301479 0.685 0.493370
lang_3Other -0.619971 0.252969 -2.451 0.014255 *
tobac_4QUIT 0.426124 0.046582 9.148 < 2e-16 ***
tobac_4Yes 0.523448 0.058605 8.932 < 2e-16 ***
age_yrs -0.003955 0.001108 -3.569 0.000358 ***
genderfemale 0.617571 0.039950 15.458 < 2e-16 ***
ethnic_3HISPANIC 0.059182 0.144512 0.410 0.682149
RPL_THEMES -0.038900 0.078423 -0.496 0.619877
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 15974 on 13063 degrees of freedom
Residual deviance: 15591 on 13051 degrees of freedom
(2181 observations deleted due to missingness)
AIC: 15617
Number of Fisher Scoring iterations: 4
broom::glance(model4a)
broom::tidy(model4a, exponentiate = TRUE)
model_performance(model4a)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
--------------------------------------------------------------------------------------------------
15617.318 | 15714.527 | 0.029 | 0.452 | 1.093 | 0.597 | -Inf | 7.655e-05 | 0.592
tbl_regression(model4a, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEMES ~ "Total SVI", tobac_4 ~ "Tobacco Use"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| Any Religious Affiliation |
|
|
|
| yes |
— |
— |
|
| no |
0.96 |
0.89, 1.04 |
0.3 |
| Race |
|
|
|
| WHITE OR CAUCASIAN |
— |
— |
|
| BLACK OR AFRICAN AMERICAN |
0.97 |
0.83, 1.14 |
0.7 |
| Other |
1.03 |
0.81, 1.31 |
0.8 |
| ASIAN |
0.70 |
0.52, 0.93 |
0.015 |
| AMERICAN INDIAN AND ALASKA NATIVE |
1.23 |
0.67, 2.20 |
0.5 |
| English Speaking |
|
|
|
| English |
— |
— |
|
| Other |
0.54 |
0.32, 0.86 |
0.014 |
| Tobacco Use |
|
|
|
| NEVER |
— |
— |
|
| QUIT |
1.53 |
1.40, 1.68 |
<0.001 |
| Yes |
1.69 |
1.50, 1.89 |
<0.001 |
| Age |
1.00 |
0.99, 1.00 |
<0.001 |
| Gender |
|
|
|
| male |
— |
— |
|
| female |
1.85 |
1.72, 2.01 |
<0.001 |
| Ethnicity |
|
|
|
| NON-HISPANIC |
— |
— |
|
| HISPANIC |
1.06 |
0.80, 1.40 |
0.7 |
| Total SVI |
0.96 |
0.82, 1.12 |
0.6 |
Any Psych + RPL_THEMESx4
model4b <- glm(any_psych_dx_2 ~ relig_affil + race_5 + lang_3
+ age_yrs + tobac_4 + gender + ethnic_3 + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 + RPL_THEME4,
family = "binomial",
data = mh_clean1)
summary(model4b)
Call:
glm(formula = any_psych_dx_2 ~ relig_affil + race_5 + lang_3 +
age_yrs + tobac_4 + gender + ethnic_3 + RPL_THEME1 + RPL_THEME2 +
RPL_THEME3 + RPL_THEME4, family = "binomial", data = mh_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.2482 -0.8736 -0.7300 1.3302 2.2268
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.271738 0.082156 -15.480 < 2e-16 ***
relig_affilno -0.033501 0.040562 -0.826 0.408856
race_5BLACK OR AFRICAN AMERICAN -0.081292 0.083559 -0.973 0.330620
race_5Other 0.005038 0.122614 0.041 0.967228
race_5ASIAN -0.457314 0.147089 -3.109 0.001877 **
race_5AMERICAN INDIAN AND ALASKA NATIVE 0.240394 0.304220 0.790 0.429412
lang_3Other -0.706477 0.254101 -2.780 0.005431 **
age_yrs -0.003565 0.001114 -3.200 0.001376 **
tobac_4QUIT 0.439496 0.046946 9.362 < 2e-16 ***
tobac_4Yes 0.539086 0.059082 9.124 < 2e-16 ***
genderfemale 0.623325 0.040128 15.533 < 2e-16 ***
ethnic_3HISPANIC 0.052089 0.144687 0.360 0.718839
RPL_THEME1 0.071775 0.112524 0.638 0.523564
RPL_THEME2 -0.315640 0.097437 -3.239 0.001198 **
RPL_THEME3 0.252296 0.071866 3.511 0.000447 ***
RPL_THEME4 0.082906 0.081579 1.016 0.309503
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 15891 on 12995 degrees of freedom
Residual deviance: 15480 on 12980 degrees of freedom
(2249 observations deleted due to missingness)
AIC: 15512
Number of Fisher Scoring iterations: 4
broom::glance(model4b)
broom::tidy(model4b, exponentiate = TRUE)
model_performance(model4b)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
--------------------------------------------------------------------------------------------------
15511.960 | 15631.518 | 0.031 | 0.451 | 1.092 | 0.596 | -Inf | 7.695e-05 | 0.593
tbl_regression(model4b, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "English Speaking", relig_affil ~ "Any Religious Affiliation", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| Any Religious Affiliation |
|
|
|
| yes |
— |
— |
|
| no |
0.97 |
0.89, 1.05 |
0.4 |
| Race |
|
|
|
| WHITE OR CAUCASIAN |
— |
— |
|
| BLACK OR AFRICAN AMERICAN |
0.92 |
0.78, 1.08 |
0.3 |
| Other |
1.01 |
0.79, 1.27 |
>0.9 |
| ASIAN |
0.63 |
0.47, 0.84 |
0.002 |
| AMERICAN INDIAN AND ALASKA NATIVE |
1.27 |
0.69, 2.29 |
0.4 |
| English Speaking |
|
|
|
| English |
— |
— |
|
| Other |
0.49 |
0.29, 0.79 |
0.005 |
| Age |
1.00 |
0.99, 1.00 |
0.001 |
| tobac_4 |
|
|
|
| NEVER |
— |
— |
|
| QUIT |
1.55 |
1.42, 1.70 |
<0.001 |
| Yes |
1.71 |
1.53, 1.92 |
<0.001 |
| Gender |
|
|
|
| male |
— |
— |
|
| female |
1.87 |
1.72, 2.02 |
<0.001 |
| Ethnicity |
|
|
|
| NON-HISPANIC |
— |
— |
|
| HISPANIC |
1.05 |
0.79, 1.39 |
0.7 |
| Soceioeconomic Status |
1.07 |
0.86, 1.34 |
0.5 |
| Household Composition |
0.73 |
0.60, 0.88 |
0.001 |
| Minority Status and Language |
1.29 |
1.12, 1.48 |
<0.001 |
| Housing and Transportation |
1.09 |
0.93, 1.27 |
0.3 |
LS0tCnRpdGxlOiAiTUhfQ29kZWJvb2tfVjIiCm91dHB1dDogCiAgaHRtbF9ub3RlYm9vazoKICAgdGhlbWVzOiBwYXBlcgogICB0b2M6IHllcwogICB0b2NfZmxvYXQ6IHllcwplZGl0b3Jfb3B0aW9uczogCiAgY2h1bmtfb3V0cHV0X3R5cGU6IGlubGluZQotLS0KCiMgTG9hZCBQYWNrYWdlcyB7LnRhYnNldH0KCiMjIHRpZHl2ZXJzZQoKYGBge3J9CmlmICghcmVxdWlyZSh0aWR5dmVyc2UpKXsKICBpbnN0YWxsLnBhY2thZ2VzKCJ0aWR5dmVyc2UiLCBkZXBlbmRlbmNpZXMgPSBUUlVFKQogIGxpYnJhcnkodGlkeXZlcnNlKQp9CmBgYAoKIyMgY29kZWJvb2tyCmBgYHtyfQppZiAoIXJlcXVpcmUoY29kZWJvb2tyKSl7CiAgaW5zdGFsbC5wYWNrYWdlcygiY29kZWJvb2tyIiwgZGVwZW5kZW5jaWVzID0gVFJVRSkKICBsaWJyYXJ5KGNvZGVib29rcikKfQpgYGAKCiMjIHN1bW1hcnl0b29scwpgYGB7cn0KaWYgKCFyZXF1aXJlKHN1bW1hcnl0b29scykpewogIGluc3RhbGwucGFja2FnZXMoInN1bW1hcnl0b29scyIsIGRlcGVuZGVuY2llcyA9IFRSVUUpCiAgbGlicmFyeShzdW1tYXJ5dG9vbHMpCn0KYGBgCgojIyBicm9vbSAKYGBge3J9CmlmICghcmVxdWlyZShicm9vbSkpewogIGluc3RhbGwucGFja2FnZXMoImJyb29tIiwgZGVwZW5kZW5jaWVzID0gVFJVRSkKICBsaWJyYXJ5KGJyb29tKQp9CmBgYAoKIyMgcGVyZm9ybWFuY2UKYGBge3J9CmlmICghcmVxdWlyZShwZXJmb3JtYW5jZSkpewogIGluc3RhbGwucGFja2FnZXMoInBlcmZvcm1hbmNlIiwgZGVwZW5kZW5jaWVzID0gVFJVRSkKICBsaWJyYXJ5KHBlcmZvcm1hbmNlKQp9CmBgYAoKIyMgZ3RzdW1tYXJ5CmBgYHtyfQppZiAoIXJlcXVpcmUoZ3RzdW1tYXJ5KSl7CiAgaW5zdGFsbC5wYWNrYWdlcygiZ3RzdW1tYXJ5IiwgZGVwZW5kZW5jaWVzID0gVFJVRSkKICBsaWJyYXJ5KGd0c3VtbWFyeSkKfQpgYGAKCiMjIGphbml0b3IKYGBge3J9CmlmICghcmVxdWlyZShqYW5pdG9yKSl7CiAgaW5zdGFsbC5wYWNrYWdlcygiamFuaXRvciIsIGRlcGVuZGVuY2llcyA9IFRSVUUpCiAgbGlicmFyeShqYW5pdG9yKQp9CmBgYAoKIyMgZm9yY2F0cwpgYGB7cn0KaWYgKCFyZXF1aXJlKGZvcmNhdHMpKXsKICBpbnN0YWxsLnBhY2thZ2VzKCJmb3JjYXRzIiwgZGVwZW5kZW5jaWVzID0gVFJVRSkKICBsaWJyYXJ5KGZvcmNhdHMpCn0KYGBgCgojIEltcG9ydCBEYXRhCmBgYHtyfQptaF9kZWlkdjMgPC0gcmVhZC5jc3YoIn4vRGVza3RvcC9SLUNvZGUvbWhfZGVpZHYzLmNzdiIpCmBgYAoKIyBEYXRhIENsZWFuaW5nIHsudGFic2V0fQoKIyMgUlBMX1RIRU1FUyBlcnJvbmVvdXMgdmFsdWVzIApgYGB7cn0KbWhfZGVpZHYzICU+JQogIHNlbGVjdChhZ2VfeXJzLCBQQVRJRU5UX0dFTkRFUl9DRCwgUEFUSUVOVF9SQUNFX0RFU0MsIFBBVElFTlRfRVRITklDX0dST1VQX0RFU0MsIFBBVElFTlRfTEFOR1VBR0VfREVTQywgUEFUSUVOVF9SRUxJR0lPTl9ERVNDLCBQQVRJRU5UX01BUklUQUxfU1RBVFVTX0RFU0MsIFBBVElFTlRfU1RBVEVfQ0QsIEVEVV9ZRUFSUywgVE9CQUNDT19ERVNDLCBkZXByZXNzaW9uLCBhbnhpZXR5LCBwdHNkLCBiaXBvbGFyLCBib2R5X2ltYWdlLCBvY2QsIHN0cmVzcywgc2Vhc29uYWxBRCwgcGFuaWMsIGFueV9wc3ljaF9keCxTVF9BQkJSLCBFX1RPVFBPUCwgUlBMX1RIRU1FUywgUlBMX1RIRU1FMSwgUlBMX1RIRU1FMiwgUlBMX1RIRU1FMywgUlBMX1RIRU1FNCkgLT4gZXhhbXBsZWRmMQpleGFtcGxlZGYxICU+JQptdXRhdGUoUlBMX1RIRU1FUyA9IG5hX2lmKFJQTF9USEVNRVMsICItOTk5IikpICU+JQptdXRhdGUoUlBMX1RIRU1FUyA9IG5hX2lmKFJQTF9USEVNRVMsICIwIikpICU+JQptdXRhdGUoUlBMX1RIRU1FMSA9IG5hX2lmKFJQTF9USEVNRTEsICItOTk5IikpICU+JQptdXRhdGUoUlBMX1RIRU1FMSA9IG5hX2lmKFJQTF9USEVNRTEsICIwIikpICU+JQptdXRhdGUoUlBMX1RIRU1FMiA9IG5hX2lmKFJQTF9USEVNRTIsICItOTk5IikpICU+JQptdXRhdGUoUlBMX1RIRU1FMiA9IG5hX2lmKFJQTF9USEVNRTIsICIwIikpICU+JQptdXRhdGUoUlBMX1RIRU1FMyA9IG5hX2lmKFJQTF9USEVNRTMsICItOTk5IikpICU+JQptdXRhdGUoUlBMX1RIRU1FMyA9IG5hX2lmKFJQTF9USEVNRTMsICIwIikpICU+JQptdXRhdGUoUlBMX1RIRU1FNCA9IG5hX2lmKFJQTF9USEVNRTQsICItOTk5IikpICU+JQptdXRhdGUoUlBMX1RIRU1FNCA9IG5hX2lmKFJQTF9USEVNRTQsICIwIikpIC0+IGV4YW1wbGVkZjFOQQoKYGBgCgojIyBNZW50YWwgSGVhbHRoIERpY2gKYGBge3J9CmV4YW1wbGVkZjFOQSAlPiUgbXV0YXRlKGFjcm9zcyhkZXByZXNzaW9uOmFueV9wc3ljaF9keCwgfmlmX2Vsc2UoLng+MC41LCAxLCAwKSwKICAgICAgICAgICAgICAgIC5uYW1lcyA9ICJ7Y29sfV8yIikpIC0+IGV4YW1wbGVkZjFOQURpMgpgYGAKCiMjIE1hcml0YWwgU3RhdHVzIApgYGB7cn0KZXhhbXBsZWRmMU5BRGkyICU+JSAKbXV0YXRlKG1zdGF0XzUgPSBhc19mYWN0b3IoUEFUSUVOVF9NQVJJVEFMX1NUQVRVU19ERVNDKSwKICAgICAgICAgbXN0YXRfNSA9IGZjdF9yZWNvZGUobXN0YXRfNSwgZGl2X3NlcCA9ICJESVZPUkNFRCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpdl9zZXAgPSAiTEVHQUxMWSBTRVBBUkFURUQiLCB3aWRvdyA9ICJXSURPV0VEIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWFycmllZCA9ICJNQVJSSUVEIiwgdW5tYXJyaWVkID0gIlNJTkdMRSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHVubWFycmllZCA9ICJTSUdOSUZJQ0FOVCBPVEhFUiIpLAogICAgICAgICBtc3RhdF81ID0gZmN0X3JlbGV2ZWwobXN0YXRfNSwgcmVmID0gJ21hcnJpZWQnKSkgJT4lIAogIG11dGF0ZShtc3RhdF81ID0gbmFfaWYobXN0YXRfNSwgIlVOS05PV04iKSkgJT4lIAptdXRhdGUobXN0YXRfNSA9IG5hX2lmKG1zdGF0XzUsICJPVEhFUiIpKSAtPiBleGFtcGxlZGYxTkFEaTJNQQpgYGAKCiMjIFJlbGlnaW9uIApgYGB7cn0KZXhhbXBsZWRmMU5BRGkyTUEgJT4lIAogIG11dGF0ZShyZWxpZ19hZmZpbCA9IGFzX2ZhY3RvcihQQVRJRU5UX1JFTElHSU9OX0RFU0MpLAogICAgICAgICAgcmVsaWdfYWZmaWwgPSBmY3RfcmVjb2RlKHJlbGlnX2FmZmlsLCB5ZXMgPSAiQ0FUSE9MSUMiLAogICAgICAgICAgICAgICAgICAgICAgbm8gPSAiTk9ORSIsIAogICAgICAgICAgICAgICAgICAgICAgeWVzID0gIkNIUklTVElBTiIsIHllcyA9ICJMVVRIRVJBTiIsCiAgICAgICAgICAgICAgICAgICAgICB5ZXMgPSAiUlVTU0lBTiBPUlRIT0RPWCIsCiAgICAgICAgICAgICAgICAgICAgICB5ZXMgPSAiUFJPVEVTVEFOVCIsIHllcyA9ICJCQVBUSVNUIiwKICAgICAgICAgICAgICAgICAgICAgIHllcyA9ICJNRVRIT0RJU1QiLCB5ZXMgPSAiUFJFU0JZVEVSSUFOIiwKICAgICAgICAgICAgICAgICAgICAgIHllcyA9ICJOT04tREVOT01JTkFUSU9OQUwiLCB5ZXMgPSAiSkVXSVNIIiwKICAgICAgICAgICAgICAgICAgICAgIHllcyA9ICJNVVNMSU0iLCB5ZXMgPSAiT1RIRVIiLAogICAgICAgICAgICAgICAgICAgICAgeWVzID0gIkVQSVNDT1BBTElBTiIsIHllcyA9ICJQRU5URUNPU1RBTCIsCiAgICAgICAgICAgICAgICAgICAgICBubyA9ICJBR05PU1RJQyIsIG5vID0gIkFUSEVJU1QiLAogICAgICAgICAgICAgICAgICAgICAgeWVzID0gIkpFSE9WQUgnUyBXSVRORVNTIiwgeWVzID0gIkhJTkRVIiwKICAgICAgICAgICAgICAgICAgICAgIHllcyA9ICJHUkVFSyBPUlRIT0RPWCIsIHllcyA9ICJDSFVSQ0ggT0YgSkVTVVMgQ0hSSVNUIE9GIExBVFRFUi1EQVkgU0FJTlRTIiwgeWVzID0gIkJBSEFJIiwgbm8gPSAiU1BJUklUVUFMIiwgeWVzID0gIkNIVVJDSCBPRiBDSFJJU1QiLAogICAgICAgICB5ZXMgPSAiU0VWRU5USCBEQVkgQURWRU5USVNUIiwgeWVzID0gIkFQT1NUT0xJQyIsIHllcyA9ICJCVURESElTVCIsIHllcyA9ICJOQVpBUkVORSIsIHllcyA9ICJDT05HUkVHQVRJT05BTCIsIHllcyA9ICJVTklURUQgQ0hVUkNIIE9GIENIUiIsIHllcyA9ICJSRUZPUk1FRCIsIHllcyA9ICJQQUdBTiIsIHllcyA9ICJKQUlOIiwgeWVzID0gIkFTU0VNQkxZIE9GIEdPRCIsIHllcyA9ICJSRU9SRyBDSFIgT0YgTEFUIERBWSIsIHllcyA9ICJRVUFLRVIiLCB5ZXMgPSAiVU5JVEFSSUFOIFVOSVZFUlNBTElTVCIsIHllcyA9ICJNRU5OT05JVEUiLCB5ZXMgPSAiRlJFRSBNRVRIT0RJU1QiLCB5ZXMgPSAiTkFUSVZFIEFNRVIgU1BJUklUTCIsIHllcyA9ICJXSUNDQU4iLCB5ZXMgPSAiT1JUSE9ET1giLCB5ZXMgPSAiU0FMVkFUSU9OIEFSTVkiLCB5ZXMgPSAiRElTQ0lQTEVTIE9GIENIUklTVCIsIHllcyA9ICJBRlJJQ0FOIE1FVEhPRElTVCBFUCIsIHllcyA9ICJTSUtIIiwgeWVzID0gIkNIVVJDSCBPRiBHT0QiLCB5ZXMgPSAiVEFPSVNUIiwgeWVzID0gIkFOR0xJQ0FOIiksCnJlbGlnX2FmZmlsID0gZmN0X3JlbGV2ZWwocmVsaWdfYWZmaWwsIHJlZiA9ICd5ZXMnKSkgJT4lIAptdXRhdGUocmVsaWdfYWZmaWwgPSBuYV9pZihyZWxpZ19hZmZpbCwgIlVOS05PV04iKSkgJT4lIAptdXRhdGUocmVsaWdfYWZmaWwgPSBuYV9pZihyZWxpZ19hZmZpbCwgIlBBVElFTlQgUkVGVVNFRCIpKSAtPiBleGFtcGxlZGYxTkFEaTJNQVJlbApgYGAKCiMjIFJhY2UKYGBge3J9CmV4YW1wbGVkZjFOQURpMk1BUmVsICU+JSAKbXV0YXRlKHJhY2VfNSA9IGFzX2ZhY3RvcihQQVRJRU5UX1JBQ0VfREVTQyksCiAgICAgICAgIHJhY2VfNSA9IGZjdF9yZWNvZGUocmFjZV81LCBPdGhlciA9ICJPVEhFUiIsCiAgICAgICAgICAgICAgICAgIE90aGVyID0gIlVOS05PV04iLCBPdGhlciA9ICJDSE9PU0UgTk9UIFRPIERJU0NMT1NFIiwKICAgICAgICAgICAgICAgICAgQVNJQU4gPSAiTkFUSVZFIEhBV0FJSUFOIEFORCBPVEhFUiBQQUNJRklDIElTTEFOREVSIiwgCiAgICAgICAgICAgICAgICAgIE90aGVyID0gIk1JRERMRSBFQVNURVJOL05PUlRIIEFGUklDQU4iLAogICAgICAgICAgICAgICAgQVNJQU4gPSAiQVNJQU4gSU5ESUFOIiwgQVNJQU4gPSAiT1RIRVIgQVNJQU4iLAogICAgICAgICAgICAgICAgQVNJQU4gPSAiSkFQQU5FU0UiLCBBU0lBTiA9ICJLT1JFQU4iLCBBU0lBTiA9ICJGSUxJUElOTyIsCiAgICAgICAgICAgICAgICBBU0lBTiA9ICJDSElORVNFIiksCiAgICAgICAgIHJhY2VfNSA9IGZjdF9yZWxldmVsKHJhY2VfNSwgcmVmID0gJ1dISVRFIE9SIENBVUNBU0lBTicpKSAtPiBleGFtcGxlZGYxTkFEaTJNQVJlbFJhCmBgYAoKIyMgR2VuZGVyCmBgYHtyfQpleGFtcGxlZGYxTkFEaTJNQVJlbFJhICU+JSAKbXV0YXRlKGdlbmRlciA9IGFzX2ZhY3RvcihQQVRJRU5UX0dFTkRFUl9DRCksCiAgICAgICAgIGdlbmRlciA9IGZjdF9yZWNvZGUoZ2VuZGVyLCBtYWxlID0gIk0iLCBmZW1hbGUgPSAiRiIpLAogICAgICAgICBnZW5kZXIgPSBmY3RfcmVsZXZlbChnZW5kZXIsIHJlZiA9ICJtYWxlIikpIC0+IGV4YW1wbGVkZjFOQURpMk1BUmVsUmFHCmBgYAoKIyMgTGFuZ3VhZ2UgCmBgYHtyfQpleGFtcGxlZGYxTkFEaTJNQVJlbFJhRyAlPiUgCiAgbXV0YXRlKGxhbmdfMyA9IGFzX2ZhY3RvcihQQVRJRU5UX0xBTkdVQUdFX0RFU0MpLApsYW5nXzMgPSBmY3RfcmVjb2RlKGxhbmdfMywgRW5nbGlzaCA9ICJFTkdMSVNIIiwKT3RoZXIgPSAiQVJBQklDIiwgT3RoZXIgPSAiSkFQQU5FU0UiLApPdGhlciA9ICJDSElORVNFLCBNQU5EQVJJTiIsCk90aGVyID0gIktPUkVBTiIsIE90aGVyID0gIlNJR04gTEFOR1VBR0UiLApPdGhlciA9ICJSVVNTSUFOIiwgT3RoZXIgPSAiU1BBTklTSCIsIE90aGVyID0gIkFSTUVOSUFOIiwKT3RoZXIgPSAiVFVSS0lTSCIsIE90aGVyID0gIkhJTkRJIiwgT3RoZXIgPSAiQkVOR0FMSSIsIE90aGVyID0gIkZBUlNJOyBQRVJTSUFOIiwgT3RoZXIgPSAiQUxCQU5JQU4iLCBPdGhlciA9ICJITU9ORyIsIE90aGVyID0gIlJPTUFOSUFOIiwgCk90aGVyID0gIlBVTkpBQkkiLCBPdGhlciA9ICJDUk9BVElBTiIsIE90aGVyID0gIkNIQUxERUFOIiwgCk90aGVyID0gIkJVUk1FU0UiLCBPdGhlciA9ICJQT1JUVUdVRVNFIiwKT3RoZXIgPSAiVEFHQUxPRyIsIE90aGVyID0gIkZSRU5DSCIsCk90aGVyID0gIkdFUk1BTiIsIE90aGVyID0gIkNISU5FU0UsIENBTlRPTkVTRSIsCk90aGVyID0gIkJPU05JQU4iLCBPdGhlciA9ICJVUkRVIiwKT3RoZXIgPSAiVU5LTk9XTiIpLApsYW5nXzMgPSBmY3RfcmVsZXZlbChsYW5nXzMsIHJlZiA9ICdFbmdsaXNoJykpIC0+IGV4YW1wbGVkZjFOQURpMk1BUmVsUmFHTAoKYGBgCgojIyBFdGhuaWNpdHkgCmBgYHtyfQpleGFtcGxlZGYxTkFEaTJNQVJlbFJhR0wgJT4lIAogIG11dGF0ZShldGhuaWNfMyA9IGFzX2ZhY3RvcihQQVRJRU5UX0VUSE5JQ19HUk9VUF9ERVNDKSkgJT4lIAogbXV0YXRlKGV0aG5pY18zID0gbmFfaWYoZXRobmljXzMsICJVTktOT1dOIikpICU+JSAKbXV0YXRlKGV0aG5pY18zID0gbmFfaWYoZXRobmljXzMsICJDSE9PU0UgTk9UIFRPIERJU0NMT1NFIikpIC0+IGV4YW1wbGVkZjFOQURpMk1BUmVsUmFHTEV0aApgYGAKCiMgdG9iYWNjbyAKYGBge3J9CmV4YW1wbGVkZjFOQURpMk1BUmVsUmFHTEV0aCAlPiUgCiAgbXV0YXRlKHRvYmFjXzQgPSBhc19mYWN0b3IoVE9CQUNDT19ERVNDKSwKIHRvYmFjXzQgPSBmY3RfcmVjb2RlKHRvYmFjXzQsIFllcyA9ICJQQVNTSVZFIiwKWWVzID0gIllFUyIpLAp0b2JhY180ID0gZmN0X3JlbGV2ZWwodG9iYWNfNCwgcmVmID0gJ05FVkVSJykpICU+JSAKbXV0YXRlKHRvYmFjXzQgPSBuYV9pZih0b2JhY180LCAiTk9UIEFTS0VEIikpIC0+IGV4YW1wbGVkZjFOQURpMk1BUmVsUmFHTEV0aFQKYGBgCgoKIyBDb2RlYm9vayAKYGBge3J9CmV4YW1wbGVkZjFOQURpMk1BUmVsUmFHTEV0aFQgJT4lIApzZWxlY3QoYWdlX3lycywgZ2VuZGVyLCByYWNlXzUsIGV0aG5pY18zLCBsYW5nXzMsIHJlbGlnX2FmZmlsLCBtc3RhdF81LCBQQVRJRU5UX1NUQVRFX0NELCBFRFVfWUVBUlMsIHRvYmFjXzQsIGRlcHJlc3Npb25fMiwgYW54aWV0eV8yLCBwdHNkXzIsIGJpcG9sYXJfMiwgYm9keV9pbWFnZV8yLCBvY2RfMiwgc2Vhc29uYWxBRF8yLCBwYW5pY18yLCBhbnlfcHN5Y2hfZHhfMiwgRV9UT1RQT1AsIFJQTF9USEVNRVMsIFJQTF9USEVNRTEsIFJQTF9USEVNRTIsIFJQTF9USEVNRTMsIFJQTF9USEVNRTQpIC0+IG1oX2NsZWFuMQpwcmludChkZlN1bW1hcnkobWhfY2xlYW4xKSwgbWV0aG9kID0gJ3JlbmRlcicpIApgYGAKCiMgUGF0aWVudCBDaGFyYWN0ZXJpc3RpY3Mgey50YWJzZXR9CgojIyBCYXNlbGluZSBDaGFyYWN0ZXJpc3RpY3MgCmBgYHtyfQptaF9jbGVhbjEgJT4lIAogIHNlbGVjdChhZ2VfeXJzLCBnZW5kZXIsIHJhY2VfNSwgZXRobmljXzMsIGxhbmdfMywgcmVsaWdfYWZmaWwsIG1zdGF0XzUsIHRvYmFjXzQsIGRlcHJlc3Npb25fMiwgYW54aWV0eV8yLCBwdHNkXzIsIGFueV9wc3ljaF9keF8yLCBSUExfVEhFTUVTLCBSUExfVEhFTUUxLCBSUExfVEhFTUUyLCBSUExfVEhFTUUzLCBSUExfVEhFTUU0KSAtPiBiYXNlbGluZQpiYXNlbGluZSAlPiUgdGJsX3N1bW1hcnkobGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgZGVwcmVzc2lvbl8yIH4gIkRlcHJlc3Npb24iLCBhbnhpZXR5XzIgfiAiQW54aWV0eSIsIHB0c2RfMiB+ICJQVFNEIiwgYW55X3BzeWNoX2R4XzIgfiAiQW55IFBzeWNoaWF0cmljIERpYWdub3NpcyIsIFJQTF9USEVNRVMgfiAiVG90YWwgU1ZJIiwgUlBMX1RIRU1FMSB+ICJTb2NlaW9lY29ub21pYyBTdGF0dXMiLCBSUExfVEhFTUUyIH4gIkhvdXNlaG9sZCBDb21wb3NpdGlvbiIsIFJQTF9USEVNRTMgfiAiTWlub3JpdHkgU3RhdHVzIGFuZCBMYW5ndWFnZSIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iLCB0b2JhY180IH4gIlRvYmFjY28gVXNlIiksCiAgICAgICAgc3RhdGlzdGljID0gbGlzdChhbGxfY29udGludW91cygpIH4gInttZWFufSAoe3NkfSkiKSwKICAgICAgICBtaXNzaW5nX3RleHQgPSAiKE1pc3NpbmcpIikKYGBgCgoKIyMgQmFzZWxpbmUgQ2hhcmFjdGVyaXN0aWNzIGJ5IERlcHJlc3Npb24gCmBgYHtyfQpiYXNlbGluZSAlPiUgdGJsX3N1bW1hcnkoYnkgPSBkZXByZXNzaW9uXzIsCiAgICAgICAgIHN0YXRpc3RpYyA9IGxpc3QoYWxsX2NvbnRpbnVvdXMoKSB+ICJ7bWVhbn0gKHtzZH0pIiksCiAgICAgICAgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgYW54aWV0eV8yIH4gIkFueGlldHkiLCBwdHNkXzIgfiAiUFRTRCIsIGFueV9wc3ljaF9keF8yIH4gIkFueSBQc3ljaGlhdHJpYyBEaWFnbm9zaXMiLCBSUExfVEhFTUVTIH4gIlRvdGFsIFNWSSIsIFJQTF9USEVNRTEgfiAiU29jZWlvZWNvbm9taWMgU3RhdHVzIiwgUlBMX1RIRU1FMiB+ICJIb3VzZWhvbGQgQ29tcG9zaXRpb24iLCBSUExfVEhFTUUzIH4gIk1pbm9yaXR5IFN0YXR1cyBhbmQgTGFuZ3VhZ2UiLCBSUExfVEhFTUU0IH4gIkhvdXNpbmcgYW5kIFRyYW5zcG9ydGF0aW9uIiwgdG9iYWNfNCB+ICJUb2JhY2NvIFVzZSIpLAogICAgICAgIG1pc3NpbmdfdGV4dCA9ICIoTWlzc2luZykiCiAgICAgICAgKSAlPiUgYWRkX3AoKQoKCmBgYAoKIyMgQmFzZWxpbmUgQ2hhcmFjdGVyaXN0aWNzIEJ5IEFueGlldHkKYGBge3J9CmJhc2VsaW5lICU+JSB0Ymxfc3VtbWFyeShieSA9IGFueGlldHlfMiwKICAgICAgIHN0YXRpc3RpYyA9IGxpc3QoYWxsX2NvbnRpbnVvdXMoKSB+ICJ7bWVhbn0gKHtzZH0pIiksCiAgICAgICAgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgZGVwcmVzc2lvbl8yIH4gIkRlcHJlc3Npb24iLCBwdHNkXzIgfiAiUFRTRCIsIGFueV9wc3ljaF9keF8yIH4gIkFueSBQc3ljaGlhdHJpYyBEaWFnbm9zaXMiLCBSUExfVEhFTUVTIH4gIlRvdGFsIFNWSSIsIFJQTF9USEVNRTEgfiAiU29jZWlvZWNvbm9taWMgU3RhdHVzIiwgUlBMX1RIRU1FMiB+ICJIb3VzZWhvbGQgQ29tcG9zaXRpb24iLCBSUExfVEhFTUUzIH4gIk1pbm9yaXR5IFN0YXR1cyBhbmQgTGFuZ3VhZ2UiLCBSUExfVEhFTUU0IH4gIkhvdXNpbmcgYW5kIFRyYW5zcG9ydGF0aW9uIiwgdG9iYWNfNCB+ICJUb2JhY2NvIFVzZSIpLAogICAgICAgIG1pc3NpbmdfdGV4dCA9ICIoTWlzc2luZykiCiAgICAgICAgKSAlPiUgYWRkX3AoKQpgYGAKCiMjIEJhc2VsaW5lIENoYXJhY3RlcmlzdGljcyBieSBBbnkgUHN5Y2ggRHggCmBgYHtyfQpiYXNlbGluZSAlPiUgdGJsX3N1bW1hcnkoYnkgPSBhbnlfcHN5Y2hfZHhfMiwKICAgICAgIHN0YXRpc3RpYyA9IGxpc3QoYWxsX2NvbnRpbnVvdXMoKSB+ICJ7bWVhbn0gKHtzZH0pIiksCiAgICAgICAgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgZGVwcmVzc2lvbl8yIH4gIkRlcHJlc3Npb24iLCBwdHNkXzIgfiAiUFRTRCIsIGFueGlldHlfMiB+ICJBbnhpZXR5IiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgdG9iYWNfNCB+ICJUb2JhY2NvIFVzZSIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iKSwKICAgICAgICBtaXNzaW5nX3RleHQgPSAiKE1pc3NpbmcpIgogICAgICAgICkgJT4lIGFkZF9wKCkKYGBgCgoKIyBQcmVsaW0gTW9kZWxzIHsudGFic2V0fQoKIyMgRGVwcmVzc2lvbiArIFJQTF9USEVNRVMKYGBge3J9IAoKbW9kZWwxYSA8LSBnbG0oZGVwcmVzc2lvbl8yIH4gKyByYWNlXzUgKyBsYW5nXzMgKyByZWxpZ19hZmZpbCArIGFnZV95cnMKICAgICAgICAgICAgICAgKyBnZW5kZXIgKyBldGhuaWNfMyArIHRvYmFjXzQgKyBSUExfVEhFTUVTLAogICAgICAgICAgICAgIGZhbWlseSA9ICJiaW5vbWlhbCIsCiAgICAgICAgICAgICAgZGF0YSA9IG1oX2NsZWFuMSkKc3VtbWFyeShtb2RlbDFhKQpicm9vbTo6Z2xhbmNlKG1vZGVsMWEpCmJyb29tOjp0aWR5KG1vZGVsMWEsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKG1vZGVsMWEpCnRibF9yZWdyZXNzaW9uKG1vZGVsMWEsIGxhYmVsID0gbGlzdChhZ2VfeXJzIH4gIkFnZSIsIGdlbmRlcn4gIkdlbmRlciIsIHJhY2VfNSB+ICJSYWNlIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIkVuZ2xpc2ggU3BlYWtpbmciLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCB0b2JhY180IH4gIlRvYmFjY28gVXNlIiksIGV4cG9uZW50aWF0ZSA9IFRSVUUpCgpgYGAKCiMjIERlcHJlc3Npb24gKyBSUExfVEhFTUVTeDQgCmBgYHtyfQoKbW9kZWwxYiA8LSBnbG0oZGVwcmVzc2lvbl8yIH4gIGxhbmdfMyArIHJlbGlnX2FmZmlsICsgYWdlX3lycyArIHJhY2VfNQogICAgICAgKyB0b2JhY180ICsgZ2VuZGVyICsgZXRobmljXzMgKyBSUExfVEhFTUUxICsgUlBMX1RIRU1FMiArIFJQTF9USEVNRTMgKyBSUExfVEhFTUU0LAogICAgICAgICAgICAgIGZhbWlseSA9ICJiaW5vbWlhbCIsCiAgICAgICAgICAgICAgZGF0YSA9IG1oX2NsZWFuMSkKc3VtbWFyeShtb2RlbDFiKQpicm9vbTo6Z2xhbmNlKG1vZGVsMWIpCmJyb29tOjp0aWR5KG1vZGVsMWIsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKG1vZGVsMWIpCnRibF9yZWdyZXNzaW9uKG1vZGVsMWIsIGxhYmVsID0gbGlzdChhZ2VfeXJzIH4gIkFnZSIsIGdlbmRlcn4gIkdlbmRlciIsIHJhY2VfNSB+ICJSYWNlIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIkVuZ2xpc2ggU3BlYWtpbmciLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgUlBMX1RIRU1FMSB+ICJTb2NlaW9lY29ub21pYyBTdGF0dXMiLCBSUExfVEhFTUUyIH4gIkhvdXNlaG9sZCBDb21wb3NpdGlvbiIsIFJQTF9USEVNRTMgfiAiTWlub3JpdHkgU3RhdHVzIGFuZCBMYW5ndWFnZSIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iLCB0b2JhY180IH4gIlRvYmFjY28gVXNlIiksIGV4cG9uZW50aWF0ZSA9IFRSVUUpCmBgYAoKIyMgQW54aWV0eSArIFJQTF9USEVNRVMKYGBge3J9Cm1vZGVsMmEgPC0gZ2xtKGFueGlldHlfMiB+IGxhbmdfMyArIGFnZV95cnMgKyByYWNlXzUgKyByZWxpZ19hZmZpbAogICAgICAgICAgICAgICArIHRvYmFjXzQgKyBnZW5kZXIgKyBldGhuaWNfMyArIFJQTF9USEVNRVMsCiAgICAgICAgICAgICAgZmFtaWx5ID0gImJpbm9taWFsIiwKICAgICAgICAgICAgICBkYXRhID0gbWhfY2xlYW4xKQpzdW1tYXJ5KG1vZGVsMmEpCmJyb29tOjpnbGFuY2UobW9kZWwyYSkKYnJvb206OnRpZHkobW9kZWwyYSwgZXhwb25lbnRpYXRlID0gVFJVRSkKbW9kZWxfcGVyZm9ybWFuY2UobW9kZWwyYSkKdGJsX3JlZ3Jlc3Npb24obW9kZWwyYSwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBSUExfVEhFTUVTIH4gIlRvdGFsIFNWSSIsIHRvYmFjXzQgfiAiVG9iYWNjbyBVc2UiKSwgZXhwb25lbnRpYXRlID0gVFJVRSkKYGBgCiMjIEFueGlldHkgKyBSUExfVEhFTUVTeDQKYGBge3J9Cm1vZGVsMmIgPC0gZ2xtKGFueGlldHlfMiB+ICBsYW5nXzMgKyBhZ2VfeXJzICsgcmFjZV81ICsgcmVsaWdfYWZmaWwgCiAgICAgICAgICArIHRvYmFjXzQgKyBnZW5kZXIgKyBldGhuaWNfMyArIFJQTF9USEVNRTEgKyBSUExfVEhFTUUyICsgUlBMX1RIRU1FMyArIFJQTF9USEVNRTQsCiAgICAgICAgICAgICAgZmFtaWx5ID0gImJpbm9taWFsIiwKICAgICAgICAgICAgICBkYXRhID0gbWhfY2xlYW4xKQpzdW1tYXJ5KG1vZGVsMmIpCmJyb29tOjpnbGFuY2UobW9kZWwyYikKYnJvb206OnRpZHkobW9kZWwyYiwgZXhwb25lbnRpYXRlID0gVFJVRSkKbW9kZWxfcGVyZm9ybWFuY2UobW9kZWwyYikKdGJsX3JlZ3Jlc3Npb24obW9kZWwyYiwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiRW5nbGlzaCBTcGVha2luZyIsIFJQTF9USEVNRTEgfiAiU29jZWlvZWNvbm9taWMgU3RhdHVzIiwgUlBMX1RIRU1FMiB+ICJIb3VzZWhvbGQgQ29tcG9zaXRpb24iLCBSUExfVEhFTUUzIH4gIk1pbm9yaXR5IFN0YXR1cyBhbmQgTGFuZ3VhZ2UiLCBSUExfVEhFTUU0IH4gIkhvdXNpbmcgYW5kIFRyYW5zcG9ydGF0aW9uIiwgdG9iYWNfNCB+ICJUb2JhY2NvIFVzZSIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iKSwgZXhwb25lbnRpYXRlID0gVFJVRSkKYGBgCgojIyBBbnkgUHN5Y2ggKyBSUEwgVEhFTUVTIApgYGB7cn0KbW9kZWw0YSA8LSBnbG0oYW55X3BzeWNoX2R4XzIgfiByZWxpZ19hZmZpbCArIHJhY2VfNSArIGxhbmdfMyArCiAgICAgICAgICAgICAgKyB0b2JhY180ICsgYWdlX3lycyArIGdlbmRlciArIGV0aG5pY18zICsgUlBMX1RIRU1FUywKICAgICAgICAgICAgICBmYW1pbHkgPSAiYmlub21pYWwiLAogICAgICAgICAgICAgIGRhdGEgPSBtaF9jbGVhbjEpCnN1bW1hcnkobW9kZWw0YSkKYnJvb206OmdsYW5jZShtb2RlbDRhKQpicm9vbTo6dGlkeShtb2RlbDRhLCBleHBvbmVudGlhdGUgPSBUUlVFKQptb2RlbF9wZXJmb3JtYW5jZShtb2RlbDRhKQp0YmxfcmVncmVzc2lvbihtb2RlbDRhLCBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBnZW5kZXJ+ICJHZW5kZXIiLCByYWNlXzUgfiAiUmFjZSIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJFbmdsaXNoIFNwZWFraW5nIiwgcmVsaWdfYWZmaWwgfiAiQW55IFJlbGlnaW91cyBBZmZpbGlhdGlvbiIsIFJQTF9USEVNRVMgfiAiVG90YWwgU1ZJIiwgdG9iYWNfNCB+ICJUb2JhY2NvIFVzZSIpLCBleHBvbmVudGlhdGUgPSBUUlVFKQpgYGAKCiMjIEFueSBQc3ljaCArIFJQTF9USEVNRVN4NApgYGB7cn0KbW9kZWw0YiA8LSBnbG0oYW55X3BzeWNoX2R4XzIgfiByZWxpZ19hZmZpbCArIHJhY2VfNSArIGxhbmdfMyAKICAgICAgICAgICAgICsgYWdlX3lycyArIHRvYmFjXzQgKyBnZW5kZXIgKyBldGhuaWNfMyAgKyBSUExfVEhFTUUxICsgUlBMX1RIRU1FMiArIFJQTF9USEVNRTMgKyBSUExfVEhFTUU0LAogICAgICAgICAgICAgIGZhbWlseSA9ICJiaW5vbWlhbCIsCiAgICAgICAgICAgICAgZGF0YSA9IG1oX2NsZWFuMSkKc3VtbWFyeShtb2RlbDRiKQpicm9vbTo6Z2xhbmNlKG1vZGVsNGIpCmJyb29tOjp0aWR5KG1vZGVsNGIsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKG1vZGVsNGIpCnRibF9yZWdyZXNzaW9uKG1vZGVsNGIsIGxhYmVsID0gbGlzdChhZ2VfeXJzIH4gIkFnZSIsIGdlbmRlcn4gIkdlbmRlciIsIHJhY2VfNSB+ICJSYWNlIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIkVuZ2xpc2ggU3BlYWtpbmciLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgUlBMX1RIRU1FMSB+ICJTb2NlaW9lY29ub21pYyBTdGF0dXMiLCBSUExfVEhFTUUyIH4gIkhvdXNlaG9sZCBDb21wb3NpdGlvbiIsIFJQTF9USEVNRTMgfiAiTWlub3JpdHkgU3RhdHVzIGFuZCBMYW5ndWFnZSIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iKSwgZXhwb25lbnRpYXRlID0gVFJVRSkKYGBgCgo=