This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com. Note: this analysis was performed using the open source software R and Rstudio.
install.packages("dplyr")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.2'
## (as 'lib' is unspecified)
## also installing the dependencies 'cli', 'fansi', 'pkgconfig', 'withr', 'utf8', 'generics', 'lifecycle', 'tibble', 'tidyselect', 'vctrs', 'pillar'
install.packages("ggplot2")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.2'
## (as 'lib' is unspecified)
## also installing the dependencies 'colorspace', 'farver', 'labeling', 'munsell', 'RColorBrewer', 'viridisLite', 'gtable', 'isoband', 'scales'
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
display <- read.csv("Display_data.csv")
# plot the data to see what it looks like
plot(display$spend, display$revenue)
ggplot(display, aes(x = spend,
y = revenue)) +
geom_point() +
geom_smooth(method = "lm") # add trendline using linear model
## `geom_smooth()` using formula 'y ~ x'
## Build a linear regression model with one predictor only
lm_mod1 <- lm(revenue ~ spend, data = display)# look at our model with summary function
summary(lm_mod1)
##
## Call:
## lm(formula = revenue ~ spend, data = display)
##
## Residuals:
## Min 1Q Median 3Q Max
## -145.210 -54.647 1.117 67.780 149.476
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.9397 37.9668 0.288 0.775
## spend 4.8066 0.7775 6.182 1.31e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 86.71 on 27 degrees of freedom
## Multiple R-squared: 0.586, Adjusted R-squared: 0.5707
## F-statistic: 38.22 on 1 and 27 DF, p-value: 1.311e-06
lm_mod2 <- lm(revenue ~ spend + display, data = display)# look at our model with summary function
summary(lm_mod2)
##
## Call:
## lm(formula = revenue ~ spend + display, data = display)
##
## Residuals:
## Min 1Q Median 3Q Max
## -176.730 -35.020 8.661 56.440 129.231
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -50.8612 40.3336 -1.261 0.21850
## spend 5.5473 0.7415 7.482 6.07e-08 ***
## display 93.5856 33.1910 2.820 0.00908 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 77.33 on 26 degrees of freedom
## Multiple R-squared: 0.6829, Adjusted R-squared: 0.6586
## F-statistic: 28 on 2 and 26 DF, p-value: 3.271e-07
Ref: Zhenning “Jimmy”Xu, Marketing Research using R. https://bookdown.org/utjimmyx/marketing_research/basic-regression-analysis.html Linear Regression.An Introduction to Statistical Learning, with Applications in R. By Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani 2021. https://web.stanford.edu/~hastie/ISLR2/ISLRv2_website.pdf.