#install.packages("MASS")
#install.packages("UsingR")
library(UsingR)
## Loading required package: MASS
## Loading required package: HistData
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
## format.pval, units
##
## Attaching package: 'UsingR'
## The following object is masked from 'package:survival':
##
## cancer
library(MASS)
data()
data(package = "UsingR")
packageDescription("UsingR")
## Package: UsingR
## Version: 2.0-7
## Title: Data Sets, Etc. for the Text "Using R for Introductory
## Statistics", Second Edition
## Author: John Verzani <verzani@math.csi.cuny.edu>
## Maintainer: John Verzani <verzani@math.csi.cuny.edu>
## Description: A collection of data sets to accompany the textbook "Using
## R for Introductory Statistics," second edition.
## Depends: R (>= 2.15.0), MASS, HistData, Hmisc
## Suggests: zoo, ggplot2, vcd, lubridate, aplpack
## License: GPL (>= 2)
## LazyData: TRUE
## NeedsCompilation: no
## Packaged: 2022-01-10 19:16:26 UTC; jverzani
## Repository: CRAN
## Date/Publication: 2022-01-11 09:52:45 UTC
## Built: R 4.2.1; ; 2022-10-17 22:15:50 UTC; unix
##
## -- File: /home/usuario/R/x86_64-pc-linux-gnu-library/4.2/UsingR/Meta/package.rds
data(package = .packages(all.available = TRUE))
data(bumpers)
hist(bumpers)
data("firstchi")
boxplot(firstchi)
data(math)
boxplot(math)
median(bumpers)
## [1] 2129
mean(bumpers)
## [1] 2122.478
sd(bumpers)
## [1] 798.4574
hist(bumpers)
median(firstchi)
## [1] 23
mean(firstchi)
## [1] 23.97701
sd(firstchi)
## [1] 6.254258
hist(firstchi)
median(math)
## [1] 54
mean(math)
## [1] 54.9
sd(math)
## [1] 9.746264
hist(math)
hist(brightness, probability = TRUE)
lines(density(brightness), col="red",lwd=3)
boxplot(brightness)
#Si presentan outlier.
data("brightness")
hist(brightness)
min(brightness[brightness > min(brightness)])
## [1] 2.28
boxplot(brightness)
# encontramos las bisagras inferiores y superiores, ejecutando la función quantile, obtendremos las posiciones de las bisagras,
# definimos que la primer bisagra (Q1) es 7.702 y el tercer bisagra (Q3) es 9.130,
# con esto filtramos los valores del dataset de brightness que esten en ese rango de valores
quantile(brightness)
## 0% 25% 50% 75% 100%
## 2.0700 7.7025 8.5000 9.1300 12.4300
brightness.sin <- brightness[brightness > 7.702 & brightness < 9.130]
boxplot(brightness.sin)
data("UScereal")
str(UScereal)
## 'data.frame': 65 obs. of 11 variables:
## $ mfr : Factor w/ 6 levels "G","K","N","P",..: 3 2 2 1 2 1 6 4 5 1 ...
## $ calories : num 212 212 100 147 110 ...
## $ protein : num 12.12 12.12 8 2.67 2 ...
## $ fat : num 3.03 3.03 0 2.67 0 ...
## $ sodium : num 394 788 280 240 125 ...
## $ fibre : num 30.3 27.3 28 2 1 ...
## $ carbo : num 15.2 21.2 16 14 11 ...
## $ sugars : num 18.2 15.2 0 13.3 14 ...
## $ shelf : int 3 3 3 1 2 3 1 3 2 1 ...
## $ potassium: num 848.5 969.7 660 93.3 30 ...
## $ vitamins : Factor w/ 3 levels "100%","enriched",..: 2 2 2 2 2 2 2 2 2 2 ...
i. La relación entre manufacturer y shelf.
table(UScereal$mfr,UScereal$shelf)
##
## 1 2 3
## G 6 7 9
## K 4 7 10
## N 2 0 1
## P 2 1 6
## Q 0 3 2
## R 4 0 1
ii. La relación entre fat y vitamins
table(UScereal$vitamins,UScereal$fat)
##
## 0 0.6666667 1 1.1363636 1.3333333 1.4925373 1.6 2 2.6666667
## 100% 1 0 3 0 1 0 0 0 0
## enriched 18 1 7 1 8 4 1 2 3
## none 3 0 0 0 0 0 0 0 0
##
## 2.9850746 3.030303 4 6 9.0909091
## 100% 0 0 0 0 0
## enriched 4 2 4 1 1
## none 0 0 0 0 0
iii. La relación entre fat y shelf.
table(UScereal$shelf,UScereal$fat)
##
## 0 0.6666667 1 1.1363636 1.3333333 1.4925373 1.6 2 2.6666667 2.9850746
## 1 10 0 2 0 2 2 1 0 1 0
## 2 3 1 5 0 4 1 0 1 1 1
## 3 9 0 3 1 3 1 0 1 1 3
##
## 3.030303 4 6 9.0909091
## 1 0 0 0 0
## 2 0 1 0 0
## 3 2 3 1 1
iv. La relación entre carbohydrates y sugars
table(UScereal$carbo,UScereal$sugars)
##
## 0 0.8 1.769912 2 3 4 4.477612 5.681818 6 6.666667 7.462687 8.270677
## 10.52632 0 0 0 0 0 0 0 0 0 0 0 1
## 11 0 0 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0 0 0
## 12.5 0 0 0 0 0 0 0 0 0 0 0 0
## 13 1 0 0 0 0 0 0 0 0 0 0 0
## 13.6 0 1 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 1 0 0 0 0 0 0 0 0
## 14.66667 0 0 0 0 0 0 0 0 0 0 0 0
## 15 0 0 0 0 0 0 0 0 1 0 0 0
## 15.15152 0 0 0 0 0 0 0 0 0 0 0 0
## 15.33333 0 0 0 0 0 0 0 0 0 0 0 0
## 16 1 0 0 0 2 0 0 0 0 0 0 0
## 16.41791 0 0 0 0 0 0 0 0 0 0 0 0
## 17 0 0 0 0 1 0 0 0 0 0 0 0
## 17.04545 0 0 0 0 0 0 0 1 0 0 0 0
## 17.33333 0 0 0 0 0 0 0 0 0 0 0 0
## 17.5 0 0 0 0 0 0 0 0 0 0 0 0
## 17.91045 0 0 0 0 0 0 0 0 0 0 0 0
## 18.66667 0 0 0 0 0 0 0 0 0 0 0 0
## 19.40299 0 0 0 0 0 0 0 0 0 0 1 0
## 20 0 0 0 0 1 0 0 0 0 0 0 0
## 20.35398 0 0 1 0 0 0 0 0 0 0 0 0
## 20.89552 0 0 0 0 0 0 0 0 0 0 0 0
## 21 0 0 0 1 2 0 0 0 0 0 0 0
## 21.21212 0 0 0 0 0 0 0 0 0 0 0 0
## 21.33333 0 0 0 0 0 0 0 0 0 0 0 0
## 22 0 0 0 0 2 0 0 0 0 0 0 0
## 22.38806 0 0 0 0 0 0 0 0 0 0 0 0
## 24 0 0 0 0 0 0 0 0 0 1 0 0
## 25.37313 0 0 0 0 0 0 1 0 0 0 0 0
## 26 0 0 0 0 0 0 0 0 0 0 0 0
## 26.66667 0 0 0 0 0 0 0 0 0 0 0 0
## 27 0 0 0 0 0 0 0 0 0 0 0 0
## 28 0 0 0 0 0 1 0 0 0 0 0 0
## 28.35821 1 0 0 0 0 0 0 0 0 0 0 0
## 29.85075 1 0 0 0 0 0 0 0 0 0 0 0
## 30 0 0 0 0 0 0 0 0 0 0 0 0
## 31.34328 0 0 0 0 0 0 0 0 0 0 0 0
## 39.39394 0 0 0 0 0 0 0 0 0 0 0 0
## 68 0 0 0 0 0 0 0 0 0 0 0 0
##
## 8.75 8.955224 10.447761 10.666667 11 12 12.121212 13 13.333333
## 10.52632 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 1 0
## 12 0 0 0 0 1 1 0 2 0
## 12.5 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 2 0 0 0
## 13.6 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 1
## 14.66667 0 0 0 0 0 0 0 0 1
## 15 0 0 0 0 0 0 0 0 0
## 15.15152 0 0 0 0 0 0 0 0 0
## 15.33333 0 0 0 0 0 0 0 0 1
## 16 0 0 0 0 0 0 0 0 0
## 16.41791 0 0 0 0 0 0 0 0 0
## 17 0 0 0 0 0 0 0 0 0
## 17.04545 0 0 0 0 0 0 0 0 0
## 17.33333 0 0 0 0 0 1 0 0 0
## 17.5 1 0 0 0 0 0 0 0 0
## 17.91045 0 1 0 0 0 0 0 0 0
## 18.66667 0 0 0 0 0 0 0 0 0
## 19.40299 0 0 0 0 0 0 0 0 0
## 20 0 0 0 0 0 1 0 0 0
## 20.35398 0 0 0 0 0 0 0 0 0
## 20.89552 0 0 0 0 0 0 0 0 0
## 21 0 0 0 0 0 0 0 0 0
## 21.21212 0 0 0 0 0 0 0 0 0
## 21.33333 0 0 0 1 0 0 0 0 0
## 22 0 0 0 0 0 0 0 0 0
## 22.38806 0 1 0 0 0 0 0 0 0
## 24 0 0 0 1 0 0 0 0 0
## 25.37313 0 0 0 0 0 0 0 0 0
## 26 0 0 0 0 0 0 0 0 0
## 26.66667 0 0 0 0 0 1 0 0 0
## 27 0 0 0 0 0 0 0 0 0
## 28 0 0 0 0 0 1 0 0 0
## 28.35821 0 0 0 0 0 0 0 0 0
## 29.85075 0 0 0 0 0 0 0 0 0
## 30 0 0 0 0 0 1 0 0 0
## 31.34328 0 0 1 0 0 0 0 0 0
## 39.39394 0 0 0 0 0 0 1 0 0
## 68 0 0 0 0 0 1 0 0 0
##
## 13.432836 14 14.666667 14.925373 15.151515 16 17.045455 17.910448
## 10.52632 0 0 0 0 0 0 0 0
## 11 0 1 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0
## 12.5 0 0 0 0 0 0 1 0
## 13 0 0 0 0 0 0 0 0
## 13.6 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0
## 14.66667 0 0 0 0 0 0 0 0
## 15 0 1 0 0 0 0 0 0
## 15.15152 0 0 0 0 0 0 0 0
## 15.33333 0 0 0 0 0 0 0 0
## 16 0 0 0 0 0 1 0 0
## 16.41791 0 0 0 0 0 0 0 0
## 17 0 0 0 0 0 0 0 0
## 17.04545 0 0 0 0 0 0 0 0
## 17.33333 0 0 0 0 0 1 0 0
## 17.5 0 0 0 0 0 0 0 0
## 17.91045 0 0 0 1 0 0 0 0
## 18.66667 0 0 1 0 0 1 0 0
## 19.40299 0 0 0 0 0 0 0 0
## 20 0 1 0 0 0 0 0 0
## 20.35398 0 0 0 0 0 0 0 0
## 20.89552 0 0 0 0 0 0 0 1
## 21 0 0 0 0 0 1 0 0
## 21.21212 0 0 0 0 1 0 0 0
## 21.33333 0 0 0 0 0 0 0 0
## 22 0 0 0 0 0 0 0 0
## 22.38806 1 0 0 0 0 0 0 0
## 24 0 0 0 0 0 0 0 0
## 25.37313 0 0 0 0 0 0 0 0
## 26 0 1 0 0 0 0 0 0
## 26.66667 0 0 0 0 0 0 0 0
## 27 0 0 0 0 0 0 0 0
## 28 0 0 0 0 0 0 0 0
## 28.35821 0 0 0 0 0 0 0 0
## 29.85075 0 0 0 0 0 0 0 0
## 30 0 0 0 0 0 0 0 0
## 31.34328 0 0 0 0 0 0 0 0
## 39.39394 0 0 0 0 0 0 0 0
## 68 0 0 0 0 0 0 0 0
##
## 18.181818 19.402985 20 20.895522
## 10.52632 0 0 0 0
## 11 0 0 0 0
## 12 0 0 1 0
## 12.5 0 0 0 0
## 13 0 0 0 0
## 13.6 0 0 0 0
## 14 0 0 0 0
## 14.66667 0 0 0 0
## 15 0 0 0 0
## 15.15152 1 0 0 0
## 15.33333 0 0 0 0
## 16 0 0 0 0
## 16.41791 0 0 0 1
## 17 0 0 0 0
## 17.04545 0 0 0 0
## 17.33333 0 0 0 0
## 17.5 0 0 0 0
## 17.91045 0 0 0 0
## 18.66667 0 0 0 0
## 19.40299 0 0 0 0
## 20 0 0 0 0
## 20.35398 0 0 0 0
## 20.89552 0 0 0 0
## 21 0 0 0 0
## 21.21212 0 0 0 0
## 21.33333 0 0 0 0
## 22 0 0 0 0
## 22.38806 0 0 0 0
## 24 0 0 0 0
## 25.37313 0 1 0 0
## 26 0 0 0 0
## 26.66667 0 0 0 0
## 27 0 0 1 0
## 28 0 0 0 0
## 28.35821 0 0 0 0
## 29.85075 0 0 0 0
## 30 0 0 0 0
## 31.34328 0 0 0 0
## 39.39394 0 0 0 0
## 68 0 0 0 0
v. La relación entre fibre y manufacturer.
table(UScereal$mfr, UScereal$fibre)
##
## 0 1 1.333333 1.6 2 2.666667 2.985075 3 3.409091 3.75 4 4.477612 5 5.970149
## G 9 0 1 1 3 2 0 3 0 0 2 0 1 0
## K 2 7 2 0 0 1 0 0 0 1 1 2 0 0
## N 0 0 0 0 0 0 0 0 0 0 0 1 0 1
## P 3 0 0 0 0 0 0 0 1 0 0 0 0 0
## Q 2 1 0 0 0 0 1 0 0 0 1 0 0 0
## R 2 0 1 0 0 0 0 0 0 0 0 1 0 1
##
## 6.666667 7.462687 8 8.955224 9.090909 12 27.272727 28 30.30303
## G 0 0 0 0 0 0 0 0 0
## K 1 1 1 0 0 0 1 1 0
## N 0 0 0 0 0 0 0 0 1
## P 0 2 0 1 1 1 0 0 0
## Q 0 0 0 0 0 0 0 0 0
## R 0 0 0 0 0 0 0 0 0
vi. La relación entre sodium y sugars.
table(UScereal$sodium, UScereal$sugars)
##
## 0 0.8 1.769912 2 3 4 4.477612 5.681818 6 6.666667 7.462687 8.270677
## 0 3 0 0 0 0 0 0 0 0 0 0 0
## 51.13636 0 0 0 0 0 0 0 0 0 0 0 0
## 90 0 0 0 0 0 0 0 0 0 0 0 0
## 93.33333 0 0 0 0 0 0 0 0 0 0 0 0
## 125 0 0 0 0 0 0 0 0 0 0 0 0
## 135.33835 0 0 0 0 0 0 0 0 0 0 0 1
## 140 0 0 0 0 0 0 0 0 0 0 0 0
## 159.09091 0 0 0 0 0 0 0 1 0 0 0 0
## 173.33333 0 0 0 1 0 0 0 0 0 0 0 0
## 180 0 0 0 0 0 0 0 0 0 0 0 0
## 186.66667 0 0 0 0 0 0 0 0 0 0 0 0
## 190 0 0 0 0 0 0 0 0 0 0 0 0
## 200 0 0 0 0 3 0 0 0 0 0 0 0
## 212.38938 0 0 1 0 0 0 0 0 0 0 0 0
## 220 0 0 0 0 1 0 0 0 1 0 0 0
## 223.8806 0 0 0 0 0 0 0 0 0 0 0 0
## 226.66667 0 0 0 0 0 0 0 0 0 0 0 0
## 227.27273 0 0 0 0 0 0 0 0 0 0 0 0
## 230 0 0 0 0 1 0 0 0 0 0 0 0
## 232 0 1 0 0 0 0 0 0 0 0 0 0
## 238.80597 0 0 0 0 0 0 0 0 0 0 0 0
## 240 0 0 0 0 0 0 0 0 0 0 0 0
## 253.33333 0 0 0 0 0 0 0 0 0 1 0 0
## 266.66667 0 0 0 0 0 0 0 0 0 0 0 0
## 270 0 0 0 0 0 0 0 0 0 0 0 0
## 280 1 0 0 0 1 0 0 0 0 0 0 0
## 283.58209 0 0 0 0 0 0 0 0 0 0 0 0
## 290 0 0 0 1 1 0 0 0 0 0 0 0
## 293.33333 0 0 0 0 0 0 0 0 0 0 0 0
## 298.50746 0 0 0 0 0 0 0 0 0 0 0 0
## 313.43284 0 0 0 0 0 0 0 0 0 0 1 0
## 320 0 0 0 0 1 0 0 0 0 0 0 0
## 328.35821 0 0 0 0 0 0 0 0 0 0 0 0
## 333.33333 0 0 0 0 0 1 0 0 0 0 0 0
## 340 0 0 0 0 0 0 0 0 0 0 0 0
## 343.28358 0 0 0 0 0 0 1 0 0 0 0 0
## 358.20896 0 0 0 0 0 0 0 0 0 0 0 0
## 373.33333 0 0 0 0 0 0 0 0 0 0 0 0
## 393.93939 0 0 0 0 0 0 0 0 0 0 0 0
## 680 0 0 0 0 0 0 0 0 0 0 0 0
## 787.87879 0 0 0 0 0 0 0 0 0 0 0 0
##
## 8.75 8.955224 10.447761 10.666667 11 12 12.121212 13 13.333333
## 0 1 0 0 0 0 1 0 0 0
## 51.13636 0 0 0 0 0 0 0 0 0
## 90 0 0 0 0 0 1 0 0 0
## 93.33333 0 0 0 0 0 0 0 0 0
## 125 0 0 0 0 0 0 0 1 0
## 135.33835 0 0 0 0 0 0 0 0 0
## 140 0 0 0 0 0 1 0 0 0
## 159.09091 0 0 0 0 0 0 0 0 0
## 173.33333 0 0 0 0 0 0 0 0 0
## 180 0 0 0 0 0 1 0 2 0
## 186.66667 0 0 0 0 0 0 0 0 1
## 190 0 0 0 0 0 0 0 0 0
## 200 0 0 0 0 0 0 0 0 0
## 212.38938 0 0 0 0 0 0 0 0 0
## 220 0 0 0 0 1 0 0 0 0
## 223.8806 0 1 0 0 0 0 0 0 0
## 226.66667 0 0 0 0 0 1 0 0 0
## 227.27273 0 0 0 0 0 0 1 0 0
## 230 0 0 0 0 0 0 0 0 0
## 232 0 0 0 0 0 0 0 0 0
## 238.80597 0 0 0 0 0 0 0 0 0
## 240 0 0 0 0 0 0 0 0 1
## 253.33333 0 0 0 0 0 0 0 0 0
## 266.66667 0 0 0 1 0 0 0 0 0
## 270 0 0 0 0 0 1 0 0 0
## 280 0 0 0 1 0 1 0 0 0
## 283.58209 0 0 0 0 0 0 0 0 0
## 290 0 0 0 0 0 0 0 0 0
## 293.33333 0 0 0 0 0 0 0 0 0
## 298.50746 0 1 0 0 0 0 0 0 0
## 313.43284 0 0 0 0 0 0 0 0 0
## 320 0 0 0 0 0 0 0 0 0
## 328.35821 0 0 1 0 0 0 0 0 0
## 333.33333 0 0 0 0 0 0 0 0 1
## 340 0 0 0 0 0 0 0 0 0
## 343.28358 0 0 0 0 0 0 0 0 0
## 358.20896 0 0 0 0 0 0 0 0 0
## 373.33333 0 0 0 0 0 1 0 0 0
## 393.93939 0 0 0 0 0 0 0 0 0
## 680 0 0 0 0 0 1 0 0 0
## 787.87879 0 0 0 0 0 0 0 0 0
##
## 13.432836 14 14.666667 14.925373 15.151515 16 17.045455 17.910448
## 0 0 0 0 0 0 0 0 0
## 51.13636 0 0 0 0 0 0 1 0
## 90 0 0 0 0 0 0 0 0
## 93.33333 0 0 0 0 0 0 0 0
## 125 0 1 0 0 0 0 0 0
## 135.33835 0 0 0 0 0 0 0 0
## 140 0 0 0 0 0 0 0 0
## 159.09091 0 0 0 0 0 0 0 0
## 173.33333 0 0 0 0 0 0 0 0
## 180 0 0 0 0 0 1 0 0
## 186.66667 0 0 0 0 0 0 0 0
## 190 0 1 0 0 0 0 0 0
## 200 0 0 0 0 0 0 0 0
## 212.38938 0 0 0 0 0 0 0 0
## 220 0 0 0 0 0 0 0 0
## 223.8806 0 0 0 0 0 0 0 0
## 226.66667 0 0 0 0 0 0 0 0
## 227.27273 0 0 0 0 0 0 0 0
## 230 0 0 0 0 0 0 0 0
## 232 0 0 0 0 0 0 0 0
## 238.80597 0 0 0 1 0 0 0 0
## 240 0 0 0 0 0 0 0 0
## 253.33333 0 0 0 0 0 0 0 0
## 266.66667 0 0 1 0 0 0 0 0
## 270 0 0 0 0 0 0 0 0
## 280 0 2 0 0 0 2 0 0
## 283.58209 1 0 0 0 0 0 0 0
## 290 0 0 0 0 0 0 0 0
## 293.33333 0 0 0 0 0 1 0 0
## 298.50746 0 0 0 0 0 0 0 0
## 313.43284 0 0 0 0 0 0 0 0
## 320 0 0 0 0 0 0 0 0
## 328.35821 0 0 0 0 0 0 0 0
## 333.33333 0 0 0 0 0 0 0 0
## 340 0 0 0 0 0 0 0 0
## 343.28358 0 0 0 0 0 0 0 0
## 358.20896 0 0 0 0 0 0 0 1
## 373.33333 0 0 0 0 0 0 0 0
## 393.93939 0 0 0 0 0 0 0 0
## 680 0 0 0 0 0 0 0 0
## 787.87879 0 0 0 0 1 0 0 0
##
## 18.181818 19.402985 20 20.895522
## 0 0 0 0 0
## 51.13636 0 0 0 0
## 90 0 0 0 0
## 93.33333 0 0 1 0
## 125 0 0 0 0
## 135.33835 0 0 0 0
## 140 0 0 0 0
## 159.09091 0 0 0 0
## 173.33333 0 0 0 0
## 180 0 0 0 0
## 186.66667 0 0 0 0
## 190 0 0 0 0
## 200 0 0 0 0
## 212.38938 0 0 0 0
## 220 0 0 0 0
## 223.8806 0 1 0 0
## 226.66667 0 0 0 0
## 227.27273 0 0 0 0
## 230 0 0 0 0
## 232 0 0 0 0
## 238.80597 0 0 0 0
## 240 0 0 0 0
## 253.33333 0 0 0 0
## 266.66667 0 0 0 0
## 270 0 0 0 0
## 280 0 0 0 0
## 283.58209 0 0 0 0
## 290 0 0 0 0
## 293.33333 0 0 0 0
## 298.50746 0 0 0 1
## 313.43284 0 0 0 0
## 320 0 0 0 0
## 328.35821 0 0 0 0
## 333.33333 0 0 0 0
## 340 0 0 1 0
## 343.28358 0 0 0 0
## 358.20896 0 0 0 0
## 373.33333 0 0 0 0
## 393.93939 1 0 0 0
## 680 0 0 0 0
## 787.87879 0 0 0 0
cor(mammals$body, mammals$brain)
## [1] 0.9341638
plot(mammals)
plot(log(mammals))
data("emissions")
head(emissions)
## GDP perCapita CO2
## UnitedStates 8083000 29647 6750
## Japan 3080000 24409 1320
## Germany 1740000 21197 1740
## France 1320000 22381 550
## UnitedKingdom 1242000 21010 675
## Italy 1240000 21856 540
Estudia la relación entre las variables GDP (Gross Domestic Product), perCapita (pues eso) y CO2 (Emisiones de CO2) de cada pais.
Construye un modelo de regresión para predecir las emisiones de CO2 a partir de cada una de las variables.
Identifica los outliers y prueba de ajustar el modelo de nuevo sin ellos.
data("anorexia")
head(anorexia)
## Treat Prewt Postwt
## 1 Cont 80.7 80.2
## 2 Cont 89.4 80.1
## 3 Cont 91.8 86.4
## 4 Cont 74.0 86.3
## 5 Cont 78.1 76.1
## 6 Cont 88.3 78.1
hist(anorexia)
mean_anorexia <- aggregate(anorexia[,2:length(anorexia)], by=list(anorexia$Treat), FUN = mean)
mean_anorexia["diferencia"] <- mean_anorexia$Postwt - mean_anorexia$Prewt
mean_anorexia[mean_anorexia$diferencia == max(mean_anorexia$diferencia),]
## Group.1 Prewt Postwt diferencia
## 3 FT 83.22941 90.49412 7.264706
anorexia["diferencia"] <- anorexia$Postwt - anorexia$Prewt
#Total que Ganaron peso:
ganaron <- length(anorexia[anorexia$diferencia > 0,"diferencia"])
ganaron
## [1] 42
#Total que perdieron peso:
perdieron <- length(anorexia[anorexia$diferencia < 0,"diferencia"])
perdieron
## [1] 29
#Total que siguieron con el mismo peso:
igual <- length(anorexia[anorexia$diferencia == 0,"diferencia"])
igual
## [1] 1
pie(c(ganaron, perdieron, igual), labels = c("ganaron","perdieron","siguen igual"))
length(Melanoma[Melanoma$status == 1 | Melanoma$status == 3,"status"])
## [1] 71
table(Melanoma[,"ulcer"])
##
## 0 1
## 115 90
table(Melanoma$thickness, Melanoma$status)
##
## 1 2 3
## 0.1 0 1 0
## 0.16 0 6 1
## 0.24 0 1 0
## 0.32 1 5 0
## 0.48 0 4 0
## 0.58 0 1 0
## 0.64 0 4 0
## 0.65 0 8 2
## 0.81 3 8 0
## 0.97 2 9 0
## 1.03 0 1 0
## 1.13 0 4 0
## 1.29 0 14 2
## 1.34 1 1 0
## 1.37 0 1 0
## 1.45 0 2 1
## 1.53 0 1 0
## 1.62 3 8 1
## 1.76 1 0 0
## 1.78 0 2 0
## 1.94 2 8 0
## 2.1 1 2 0
## 2.24 1 0 0
## 2.26 3 2 0
## 2.34 1 0 0
## 2.42 1 0 0
## 2.58 3 6 0
## 2.74 0 1 0
## 2.9 0 2 1
## 3.06 1 1 0
## 3.22 2 7 1
## 3.54 5 3 0
## 3.56 1 0 0
## 3.87 3 3 0
## 4.04 1 0 0
## 4.09 0 1 0
## 4.19 2 0 0
## 4.51 1 0 0
## 4.82 0 1 0
## 4.83 1 1 0
## 4.84 3 1 1
## 5.16 2 1 0
## 5.48 1 1 0
## 5.64 0 1 0
## 5.8 2 0 0
## 6.12 0 1 1
## 6.44 1 0 0
## 6.76 0 0 1
## 7.06 1 1 0
## 7.09 0 2 0
## 7.41 1 0 0
## 7.73 1 1 0
## 7.89 0 1 0
## 8.06 0 1 0
## 8.38 0 1 0
## 8.54 0 0 1
## 9.66 0 1 0
## 12.08 1 0 0
## 12.24 0 1 0
## 12.56 0 0 1
## 12.88 1 1 0
## 13.85 1 0 0
## 14.66 1 0 0
## 17.42 1 0 0
result <- aggregate(Melanoma[,"ulcer"], by=list(Melanoma[,"ulcer"]), FUN=length)
result
## Group.1 x
## 1 0 115
## 2 1 90
presencia <- length(Melanoma[Melanoma$ulcer == 1,"ulcer"])
ausencia <- length(Melanoma[Melanoma$ulcer == 0,"ulcer"])
barplot(c(presencia, ausencia), col = c("blue","red"), legend.text = c("presencia","ausencia"))
pie(c(presencia, ausencia), col = c("blue","red"), labels = c("presencia","ausencia"))
data("babyboom")
head(babyboom)
## clock.time gender wt running.time
## 1 5 girl 3837 5
## 2 104 girl 3334 64
## 3 118 boy 3554 78
## 4 155 boy 3838 115
## 5 257 boy 3625 177
## 6 405 girl 2208 245
aggregate(babyboom[,"gender"], by = list(babyboom[,"gender"]), FUN = length)
## Group.1 x
## 1 girl 18
## 2 boy 26
babyboom[(babyboom$clock.time / 60) <= 12,]
## clock.time gender wt running.time
## 1 5 girl 3837 5
## 2 104 girl 3334 64
## 3 118 boy 3554 78
## 4 155 boy 3838 115
## 5 257 boy 3625 177
## 6 405 girl 2208 245
## 7 407 girl 1745 247
## 8 422 boy 2846 262
## 9 431 boy 3166 271
## 10 708 boy 3520 428
length(babyboom[(babyboom$clock.time / 60) <= 12,"gender"])
## [1] 10
babyboom[babyboom$wt < 3000,]
## clock.time gender wt running.time
## 6 405 girl 2208 245
## 7 407 girl 1745 247
## 8 422 boy 2846 262
## 13 814 girl 2576 494
## 18 1133 boy 2902 693
## 19 1209 boy 2635 729
## 29 1742 girl 2184 1062
## 31 1825 girl 2383 1105
## 40 2104 boy 2121 1264
length(babyboom[babyboom$wt < 3000,"gender"])
## [1] 9
genders <- babyboom[babyboom$wt < 3000,]
table(genders$gender,genders$wt)
##
## 1745 2121 2184 2208 2383 2576 2635 2846 2902
## girl 1 0 1 1 1 1 0 0 0
## boy 0 1 0 0 0 0 1 1 1
aggregate(babyboom$wt, by = list(babyboom[,"gender"]), FUN = mean)
## Group.1 x
## 1 girl 3132.444
## 2 boy 3375.308
data("Aids2")
head(Aids2)
## state sex diag death status T.categ age
## 1 NSW M 10905 11081 D hs 35
## 2 NSW M 11029 11096 D hs 53
## 3 NSW M 9551 9983 D hs 42
## 4 NSW M 9577 9654 D haem 44
## 5 NSW M 10015 10290 D hs 39
## 6 NSW M 9971 10344 D hs 36
aggregate(Aids2$state, by=list(Aids2[,"state"]), FUN=length)
## Group.1 x
## 1 NSW 1780
## 2 Other 249
## 3 QLD 226
## 4 VIC 588
totalMuertos <- Aids2[Aids2$status == "D",]
length(totalMuertos$state)
## [1] 1761
table(Aids2$sex, Aids2$T.categ)
##
## hs hsid id het haem blood mother other
## F 1 0 20 20 0 37 4 7
## M 2464 72 28 21 46 57 3 63
types <- aggregate(Aids2$T.categ, by=list(Aids2[,"T.categ"]), FUN=length)
ggplot(types, aes(x=Group.1,y=x)) + geom_bar(stat = "identity")
data(crime)
head(crime)
## y1983 y1993
## Alabama 416.0 871.7
## Alaska 613.8 660.5
## Arizona 494.2 670.8
## Arkansas 297.7 576.5
## California 772.6 1119.7
## Colorado 476.4 578.8
mean(crime$y1993)
## [1] 606.8294
mean(crime$y1983)
## [1] 437.5196
# R/ La tasa en 1993 fue mayor que la de 1983
crime[crime$y1993 == max(crime$y1993),]
## y1983 y1993
## DC 1985.4 2832.8
crime[crime$y1983 == max(crime$y1983),]
## y1983 y1993
## DC 1985.4 2832.8
crime["acumulado"] <- crime$y1983 + crime$y1993
crime[crime$acumulado == max(crime$acumulado),]
## y1983 y1993 acumulado
## DC 1985.4 2832.8 4818.2
ggplot(crime, aes(y=acumulado,x=row.names(crime)))+geom_bar(position="stack", stat="identity")