importing libraries

library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6      ✔ purrr   0.3.4 
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.1      ✔ stringr 1.4.1 
## ✔ readr   2.1.2      ✔ forcats 0.5.2 
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(moderndive)
library(skimr)
library(gapminder)

loading raw data

df = tibble(n_discs = c(0,1,2,3,4,5,6), a = c(0.078, 0.35, 0.63, 0.90, 1.23, 1.47, 1.77))
df

adding mass and force columns

df <- df %>% mutate(mass=0.005+(0.02*n_discs)) %>% mutate(force = mass*10)
df

graph

ggplot(df, aes(a, force)) +
  geom_point()

regression

ggplot(df, aes(a, force)) +
  geom_point() +
  geom_smooth(method="lm", se=FALSE)
## `geom_smooth()` using formula 'y ~ x'

lm(force ~ a, df)
## 
## Call:
## lm(formula = force ~ a, data = df)
## 
## Coefficients:
## (Intercept)            a  
##   0.0008075    0.7069614
df %>% get_correlation(force ~ a)