importing libraries
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.2.1 ✔ stringr 1.4.1
## ✔ readr 2.1.2 ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(moderndive)
library(skimr)
library(gapminder)
loading raw data
df = tibble(n_discs = c(0,1,2,3,4,5,6), a = c(0.078, 0.35, 0.63, 0.90, 1.23, 1.47, 1.77))
df
adding mass and force columns
df <- df %>% mutate(mass=0.005+(0.02*n_discs)) %>% mutate(force = mass*10)
df
graph
ggplot(df, aes(a, force)) +
geom_point()

regression
ggplot(df, aes(a, force)) +
geom_point() +
geom_smooth(method="lm", se=FALSE)
## `geom_smooth()` using formula 'y ~ x'

lm(force ~ a, df)
##
## Call:
## lm(formula = force ~ a, data = df)
##
## Coefficients:
## (Intercept) a
## 0.0008075 0.7069614
df %>% get_correlation(force ~ a)