Let M be the minimum value of the random variables as an exponential denisty with mean \(\frac{\lambda}{n}\).
n = 100 and \(\mu\) = 1000 so expected time is \(\frac{1000}{100}\) or 10 hours.
The probability density function for both \(X_1\) and \(X_2\) is \(\lambda e^{-\lambda x}\), if \(x\ge0\),
If Z =\(X_1-X_2\) then \(x_2=x_1-z\) from the definition.
So \(\int_{-\infty} ^\infty f(x_1) \cdot (fx_2)dx_1\)
\(\int_{-\infty} ^\infty f(x_1) \cdot (fx_1-z)dx_1\)
\(\int_{-\infty} ^\infty \lambda e^{-\lambda x_1}\lambda e^{-\lambda (x_1-z)dx_1}\)
\(\int_{-\infty} ^\infty \lambda^2 e^{-2\lambda x_1+\lambda z}dx_1\) = \(\frac{1}{2}\lambda e^{-\lambda z}\)
Chebyshev’s Inequality: \(P(|X-\mu|\ge k\sigma) \le \frac{1}{k^2}\)
P(|X - 10| \(\ge\) 2).
\(\sigma=\sqrt\frac{100}{3}\) \(k\sigma=2\)
\(k=\frac{2}{\sigma}\)
\(k=2\cdot\sqrt{\frac{3}{100}}\)
\(\frac{1}{k^2}\) = \((\frac{1}{2}\cdot\sqrt{\frac{100}{3}})^2\)
= 8.33 or 1 as the upper bound.
P(|X - 10| \(\ge\) 5).
\(\sigma=\sqrt\frac{100}{3}\)
\(k=\frac{2}{\sigma}\)
\(k=5\cdot\sqrt{\frac{3}{100}}\)
\(\frac{1}{k^2}\) = \((\frac{1}{5}\cdot\sqrt{\frac{100}{3}})^2\)
= 1.33 or 1 as the upper bound..
P(|X - 10| \(\ge\) 9).
\(\sigma=\sqrt\frac{100}{3}\)
\(k\sigma=10\)
\(k=5\cdot\frac{\sqrt{3}}{10}\)
\(\frac{1}{k^2}\) = \((\frac{1}{9}\cdot\sqrt{\frac{100}{3}})^2\)
= .412 as the upper bound.
P(|X - 10| \(\ge\) 20).
\(\sigma=\sqrt\frac{100}{3}\)
\(k\sigma=20\)
\(k=20\cdot\frac{\sqrt{3}}{10}\)
\(\frac{1}{k^2}\) = \((\frac{1}{20}\cdot\sqrt{\frac{100}{3}})^2\)
= .083 as the upper bound.