In this lab, we will explore and visualize the data using the tidyverse suite of packages, and perform statistical inference using infer. The data can be found in the companion package for OpenIntro resources, openintro.
Let’s load the packages.
library(tidyverse)
library(openintro)
library(infer)
set.seed(1234)You will be analyzing the same dataset as in the previous lab, where you delved into a sample from the Youth Risk Behavior Surveillance System (YRBSS) survey, which uses data from high schoolers to help discover health patterns. The dataset is called yrbss.
data('yrbss', package='openintro')
yrbss %>%
count(text_while_driving_30d)## # A tibble: 9 × 2
## text_while_driving_30d n
## <chr> <int>
## 1 0 4792
## 2 1-2 925
## 3 10-19 373
## 4 20-29 298
## 5 3-5 493
## 6 30 827
## 7 6-9 311
## 8 did not drive 4646
## 9 <NA> 918
helmets <- yrbss%>%
select(8:9) %>%
filter(!is.na(text_while_driving_30d) &
helmet_12m=="never") %>%
mutate(text = ifelse(text_while_driving_30d == 30, "everyday", "other")) %>%
count(text)
helmets## # A tibble: 2 × 2
## text n
## <chr> <int>
## 1 everyday 463
## 2 other 6040
Remember that you can use filter to limit the dataset to just non-helmet wearers. Here, we will name the dataset no_helmet.
no_helmet <- yrbss %>%
filter(helmet_12m == "never")Also, it may be easier to calculate the proportion if you create a new variable that specifies whether the individual has texted every day while driving over the past 30 days or not. We will call this variable text_ind.
no_helmet <- no_helmet %>%
mutate(text_ind = ifelse(text_while_driving_30d == "30", "yes", "no"))When summarizing the YRBSS, the Centers for Disease Control and Prevention seeks insight into the population parameters. To do this, you can answer the question, “What proportion of people in your sample reported that they have texted while driving each day for the past 30 days?” with a statistic; while the question “What proportion of people on earth have texted while driving each day for the past 30 days?” is answered with an estimate of the parameter.
The inferential tools for estimating population proportion are analogous to those used for means in the last chapter: the confidence interval and the hypothesis test.
no_helmet %>%
filter(!is.na(text_ind)) %>%
specify(response = text_ind, success = "yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = 0.95)## # A tibble: 1 × 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.0652 0.0777
Note that since the goal is to construct an interval estimate for a proportion, it’s necessary to both include the success argument within specify, which accounts for the proportion of non-helmet wearers than have consistently texted while driving the past 30 days, in this example, and that stat within calculate is here “prop”, signaling that you are trying to do some sort of inference on a proportion.
n <- 1000
p <- helmets$n[1] / sum(helmets$n)
MarginE<- 1.96 * sqrt(p*(1-p)/n)
MarginE## [1] 0.01593864
infer package, calculate confidence intervals for two other categorical variables (you’ll need to decide which level to call “success”, and report the associated margins of error. Interpet the interval in context of the data. It may be helpful to create new data sets for each of the two countries first, and then use these data sets to construct the confidence intervals.Hrs of Tv and sleep Sleep of at least 8hrs at 95% CI is 0.298-0.312 with ME = 0.0129 TV is between 0.115 - 0.126 with ME =0.0109
sleep <- yrbss %>%
filter(!is.na(school_night_hours_sleep)) %>%
mutate(eight_hours = ifelse(school_night_hours_sleep %in% c("8","9","10+"), "yes", "no"))
sleep %>%
count(eight_hours) %>%
mutate(p = n / sum(n))## # A tibble: 2 × 3
## eight_hours n p
## <chr> <int> <dbl>
## 1 no 8564 0.694
## 2 yes 3771 0.306
sleep %>%
specify(response = eight_hours, success = "yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = 0.95)## # A tibble: 1 × 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.298 0.314
n <- nrow(sleep)
z <- 1.96 # z-score 95%
se <- z*sqrt((p*(1-p))/n)
me <- z*se
me## [1] 0.008894833
tv <- yrbss %>%
filter(!is.na(hours_tv_per_school_day)) %>%
mutate(five_hours_or_more = ifelse(hours_tv_per_school_day == "5+", "yes","no"))
tv %>%
count(five_hours_or_more) %>%
mutate(p = n / sum(n))## # A tibble: 2 × 3
## five_hours_or_more n p
## <chr> <int> <dbl>
## 1 no 11650 0.880
## 2 yes 1595 0.120
tv %>%
specify(response = five_hours_or_more, success = "yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = 0.95)## # A tibble: 1 × 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.115 0.126
nt <- nrow(tv)
pt <- sum(tv$five_hours_or_more == "yes")/nt
zt <- 1.96
set <- zt*sqrt((pt*(1-pt))/nt)
met <- zt*set
met## [1] 0.01086369
Imagine you’ve set out to survey 1000 people on two questions: are you at least 6-feet tall? and are you left-handed? Since both of these sample proportions were calculated from the same sample size, they should have the same margin of error, right? Wrong! While the margin of error does change with sample size, it is also affected by the proportion.
Think back to the formula for the standard error: \(SE = \sqrt{p(1-p)/n}\). This is then used in the formula for the margin of error for a 95% confidence interval:
\[ ME = 1.96\times SE = 1.96\times\sqrt{p(1-p)/n} \,. \] Since the population proportion \(p\) is in this \(ME\) formula, it should make sense that the margin of error is in some way dependent on the population proportion. We can visualize this relationship by creating a plot of \(ME\) vs. \(p\).
Since sample size is irrelevant to this discussion, let’s just set it to some value (\(n = 1000\)) and use this value in the following calculations:
n <- 1000The first step is to make a variable p that is a sequence from 0 to 1 with each number incremented by 0.01. You can then create a variable of the margin of error (me) associated with each of these values of p using the familiar approximate formula (\(ME = 2 \times SE\)).
p <- seq(from = 0, to = 1, by = 0.01)
me <- 2 * sqrt(p * (1 - p)/n)Lastly, you can plot the two variables against each other to reveal their relationship. To do so, we need to first put these variables in a data frame that you can call in the ggplot function.
dd <- data.frame(p = p, me = me)
ggplot(data = dd, aes(x = p, y = me)) +
geom_line() +
labs(x = "Population Proportion", y = "Margin of Error")p and me. Include the margin of error vs. population proportion plot you constructed in your answer. For a given sample size, for which value of p is margin of error maximized? ME has a direct relatiomship to population proportion ## Success-failure conditionWe have emphasized that you must always check conditions before making inference. For inference on proportions, the sample proportion can be assumed to be nearly normal if it is based upon a random sample of independent observations and if both \(np \geq 10\) and \(n(1 - p) \geq 10\). This rule of thumb is easy enough to follow, but it makes you wonder: what’s so special about the number 10?
The short answer is: nothing. You could argue that you would be fine with 9 or that you really should be using 11. What is the “best” value for such a rule of thumb is, at least to some degree, arbitrary. However, when \(np\) and \(n(1-p)\) reaches 10 the sampling distribution is sufficiently normal to use confidence intervals and hypothesis tests that are based on that approximation.
You can investigate the interplay between \(n\) and \(p\) and the shape of the sampling distribution by using simulations. Play around with the following app to investigate how the shape, center, and spread of the distribution of \(\hat{p}\) changes as \(n\) and \(p\) changes.
Describe the sampling distribution of sample proportions at \(n = 300\) and \(p = 0.1\). Be sure to note the center, spread, and shape. The center is 0.1 with a spread f 0.03-1.13. The distribution appears to be normal
Keep \(n\) constant and change \(p\). How does the shape, center, and spread of the sampling distribution vary as \(p\) changes. You might want to adjust min and max for the \(x\)-axis for a better view of the distribution. As p increaes it doesnt affect the spread but the shape starts to become skewed
Now also change \(n\). How does \(n\) appear to affect the distribution of \(\hat{p}\)? n has an indirect relationship with the spread * * *
For some of the exercises below, you will conduct inference comparing two proportions. In such cases, you have a response variable that is categorical, and an explanatory variable that is also categorical, and you are comparing the proportions of success of the response variable across the levels of the explanatory variable. This means that when using infer, you need to include both variables within specify.
exercise <- yrbss %>%
filter(!is.na(strength_training_7d)) %>%
mutate(everyday = ifelse(strength_training_7d == "7", "yes", "no"))
exercise %>%
count(everyday) %>%
mutate(p = n / sum(n))## # A tibble: 2 × 3
## everyday n p
## <chr> <int> <dbl>
## 1 no 10322 0.832
## 2 yes 2085 0.168
exercise %>%
specify(response = everyday, success = "yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = 0.95)## # A tibble: 1 × 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.162 0.175
pe <- sum(exercise$everyday == "yes") / sum(exercise$everyday == "yes"|exercise$everyday == "no")
ne <- nrow(exercise)
ze <- 1.96
see <- ze*sqrt((pe*(1-pe))/ne)
mee<- ze * see
mee## [1] 0.01289576
sleep_10 <- yrbss %>%
filter(!is.na(school_night_hours_sleep)) %>%
mutate(ten_or_more = ifelse(school_night_hours_sleep == "10+", "yes", "no"))
sleep_10 %>%
count(ten_or_more) %>%
mutate(p = n / sum(n))## # A tibble: 2 × 3
## ten_or_more n p
## <chr> <int> <dbl>
## 1 no 12019 0.974
## 2 yes 316 0.0256
sleep_10 %>%
specify(response = ten_or_more, success = "yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = 0.95)## # A tibble: 1 × 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.0229 0.0285
ps <- sum(sleep_10$ten_or_more == "yes") / sum(sleep_10$ten_or_more == "yes"|sleep_10$ten_or_more == "no")
ns <- nrow(sleep_10)
zs <- 1.96
ses <- zs*sqrt((ps*(1-ps))/ns)
mes<- zs * ses
mes ## [1] 0.005464886
Let’s say there has been no difference in likeliness to strength train every day of the week for those who sleep 10+ hours. What is the probablity that you could detect a change (at a significance level of 0.05) simply by chance? Hint: Review the definition of the Type 1 error. 5% since type 1 error is tied to level significance level
Suppose you’re hired by the local government to estimate the proportion of residents that attend a religious service on a weekly basis. According to the guidelines, the estimate must have a margin of error no greater than 1% with 95% confidence. You have no idea what to expect for \(p\). How many people would you have to sample to ensure that you are within the guidelines?
Hint: Refer to your plot of the relationship between \(p\) and margin of error. This question does not require using a dataset.
9604+ people
MER <- 0.01
zR <- 1.96
pR <- 0.5
nR <- zR**2 * pR*(1-pR)/MER**2
nR## [1] 9604