title: “Inference for categorical data” author: “” output: pdf_document: default html_document: includes: in_header: header.html css: ./lab.css highlight: pygments theme: cerulean toc: true toc_float: true editor_options: chunk_output_type: console —
library(tidyverse)
library(openintro)
library(infer)
set.seed(74226)
In this lab, we will explore and visualize the data using the tidyverse suite of packages, and perform statistical inference using infer. The data can be found in the companion package for OpenIntro resources, openintro.
Let’s load the packages.
library(tidyverse)
library(openintro)
library(infer)
data('yrbss', package='openintro')
seed <- 1234
You will be analyzing the same dataset as in the previous lab, where
you delved into a sample from the Youth Risk Behavior Surveillance
System (YRBSS) survey, which uses data from high schoolers to help
discover health patterns. The dataset is called yrbss.
yrbss %>%
count(text_while_driving_30d, sort=TRUE)
## # A tibble: 9 × 2
## text_while_driving_30d n
## <chr> <int>
## 1 0 4792
## 2 did not drive 4646
## 3 1-2 925
## 4 <NA> 918
## 5 30 827
## 6 3-5 493
## 7 10-19 373
## 8 6-9 311
## 9 20-29 298
#1. What are the counts within each category for the amount of days these students have texted while driving within the past 30 days? Answer: There are 4,646 students that didn’t drive. 4,792 didn’t text and drive. The rest is seen in above category.
#2. What is the proportion of people who have texted while driving every day in the past 30 days and never wear helmets?
danger <- yrbss %>%
filter(helmet_12m=="never") %>%
filter(!is.na(text_while_driving_30d)) %>%
mutate(text_ind_everyday = ifelse(text_while_driving_30d == "30", "yes", "no"))
danger %>%
count(text_ind_everyday)
## # A tibble: 2 × 2
## text_ind_everyday n
## <chr> <int>
## 1 no 6040
## 2 yes 463
There is a total of 464/6040 = 7.66% of students who texted everyday and never wear helemts
data('yrbss', package='openintro')
no_helmet <- yrbss %>%
filter(helmet_12m == "never")
no_helmet <- no_helmet %>%
mutate(text_ind = ifelse(text_while_driving_30d == "30", "yes", "no"))
When summarizing the YRBSS, the Centers for Disease Control and Prevention seeks insight into the population parameters. To do this, you can answer the question, “What proportion of people in your sample reported that they have texted while driving each day for the past 30 days?” with a statistic; while the question “What proportion of people on earth have texted while driving each day for the past 30 days?” is answered with an estimate of the parameter.
The inferential tools for estimating population proportion are analogous to those used for means in the last chapter: the confidence interval and the hypothesis test.
Note that since the goal is to construct an interval estimate for a
proportion, it’s necessary to both include the success
argument within specify, which accounts for the proportion
of non-helmet wearers than have consistently texted while driving the
past 30 days, in this example, and that stat within
calculate is here “prop”, signaling that you are trying to
do some sort of inference on a proportion.
danger %>%
specify(response = text_ind_everyday, success = "yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = 0.95)
## # A tibble: 1 × 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.0646 0.0772
Looking through the margin of error, I see that the Confidence Interval is from 6.4% to 7.7%.
#4. Using the infer package, calculate confidence
intervals for two other categorical variables (you’ll need to decide
which level to call “success”,and report the associated margins of
error. Interpet the interval in context of the data. It may be helpful
to create new data sets for each of the two countries first, and then
use these data sets to construct the confidence intervals.
glimpse(yrbss)
## Rows: 13,583
## Columns: 13
## $ age <int> 14, 14, 15, 15, 15, 15, 15, 14, 15, 15, 15, 1…
## $ gender <chr> "female", "female", "female", "female", "fema…
## $ grade <chr> "9", "9", "9", "9", "9", "9", "9", "9", "9", …
## $ hispanic <chr> "not", "not", "hispanic", "not", "not", "not"…
## $ race <chr> "Black or African American", "Black or Africa…
## $ height <dbl> NA, NA, 1.73, 1.60, 1.50, 1.57, 1.65, 1.88, 1…
## $ weight <dbl> NA, NA, 84.37, 55.79, 46.72, 67.13, 131.54, 7…
## $ helmet_12m <chr> "never", "never", "never", "never", "did not …
## $ text_while_driving_30d <chr> "0", NA, "30", "0", "did not drive", "did not…
## $ physically_active_7d <int> 4, 2, 7, 0, 2, 1, 4, 4, 5, 0, 0, 0, 4, 7, 7, …
## $ hours_tv_per_school_day <chr> "5+", "5+", "5+", "2", "3", "5+", "5+", "5+",…
## $ strength_training_7d <int> 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 3, 0, 0, 7, 7, …
## $ school_night_hours_sleep <chr> "8", "6", "<5", "6", "9", "8", "9", "6", "<5"…
Imagine you’ve set out to survey 1000 people on two questions: are you at least 6-feet tall? and are you left-handed? Since both of these sample proportions were calculated from the same sample size, they should have the same margin of error, right? Wrong! While the margin of error does change with sample size, it is also affected by the proportion.
Think back to the formula for the standard error: \(SE = \sqrt{p(1-p)/n}\). This is then used in the formula for the margin of error for a 95% confidence interval:
\[ ME = 1.96\times SE = 1.96\times\sqrt{p(1-p)/n} \,. \] Since the population proportion \(p\) is in this \(ME\) formula, it should make sense that the margin of error is in some way dependent on the population proportion. We can visualize this relationship by creating a plot of \(ME\) vs. \(p\).
Since sample size is irrelevant to this discussion, let’s just set it to some value (\(n = 1000\)) and use this value in the following calculations:
n <- 1000
The first step is to make a variable p that is a
sequence from 0 to 1 with each number incremented by 0.01. You can then
create a variable of the margin of error (me) associated
with each of these values of p using the familiar
approximate formula (\(ME = 2 \times
SE\)).
p <- seq(from = 0, to = 1, by = 0.01)
me <- 2 * sqrt(p * (1 - p)/n)
Lastly, you can plot the two variables against each other to reveal
their relationship. To do so, we need to first put these variables in a
data frame that you can call in the ggplot function.
dd <- data.frame(p = p, me = me)
ggplot(data = dd, aes(x = p, y = me)) +
geom_line() +
labs(x = "Population Proportion", y = "Margin of Error")
#5. Describe the relationship between p and
me. Include the margin of error vs. population proportion
plot you constructed in your answer. For a given sample size, for which
value of p is margin of error maximized? THe margin of
error increases as population proportion increased. Margin of error is
optimal at the population of 50%.
We have emphasized that you must always check conditions before making inference. For inference on proportions, the sample proportion can be assumed to be nearly normal if it is based upon a random sample of independent observations and if both \(np \geq 10\) and \(n(1 - p) \geq 10\). This rule of thumb is easy enough to follow, but it makes you wonder: what’s so special about the number 10?
The short answer is: nothing. You could argue that you would be fine with 9 or that you really should be using 11. What is the “best” value for such a rule of thumb is, at least to some degree, arbitrary. However, when \(np\) and \(n(1-p)\) reaches 10 the sampling distribution is sufficiently normal to use confidence intervals and hypothesis tests that are based on that approximation.
You can investigate the interplay between \(n\) and \(p\) and the shape of the sampling distribution by using simulations. Play around with the following app to investigate how the shape, center, and spread of the distribution of \(\hat{p}\) changes as \(n\) and \(p\) changes.
#6. Describe the sampling distribution of sample proportions at \(n = 300\) and \(p = 0.1\). Be sure to note the center, spread, and shape. The distribution of the sampling proportion with a sample size of 300 is mostly a bell-curved and symmterical size. The Center is around a population proportion which is in the 0.1. The Spread is within a sample proportion of 0.07. The Shape of the distribution is around 0.1 population proportion. #7. Keep \(n\) constant and change \(p\). How does the shape, center, and spread of the sampling distribution vary as \(p\) changes. You might want to adjust min and max for the \(x\)-axis for a better view of the distribution. When the proportion increases,the location of the center of distribution get shifted. This can change the shapre and spread of distribution. This do not seem to change much except the population proportion is near 0 or 1. #8. Now also change \(n\). How does \(n\) appear to affect the distribution of \(\hat{p}\)? When N changes this can affect the spread of samplnig distribution. When n decreases, the spread of the distribution increases.