\[A=\lim_{n \to \infty} \sum_{i=1}^{n}
\left[f(x_i^*)-g(x_i^*)\right]\Delta x \]
\[A=\int_{a}^{b}\left[f(x)-g(x)\right]\;dx\]
\[A=\int_{a}^{b}|f(x)-g(x)|\;dx\]
\[A=\int_{c}^{d}\left[f(y)-g(y)\right]\;dy\]
\[V=\lim_{n \to \infty} \sum_{i=1}^{n}
f(x_i^*)\Delta x=\int_{a}^{b}A(x)\;dx\]
\[\lim_{n \to \infty} \sum_{i=1}^{n} \;2\pi\,\overline{x}_i\,f(\overline{x}_i)\Delta x=\int_{a}^{b}2\pi x\,f(x)\;dx\]
\[V=\int_{a}^{b}2\pi xf(x)\;dx
\quad 0≤a<b\]
\[f(c)=f_{avg}=\frac {1}{b-a}\int_{a}^{b}f(x)\;dx\]
\[\int_{a}^{b}f(x)\;dx=f(c)(b-a)\]
Essential Calculus, metric edition 2e, (2022) James Stewart, Daniel
K. Clegg, Saleem Watson, Cengage Learning.
Calculus Early Transcendentals:Differential & Multi-Variable
Calculus for Social Sciences (2017). Petra Menz, Nicola Mulberry from
Lyryx’ textbook Paul’s Online Notes
The LibreTexts libraries Methmatics
Math’s Fun Advance
Math24
OpenStax
GeoGebra