datasets::Loblolly
##    height age Seed
## 1    4.51   3  301
## 15  10.89   5  301
## 29  28.72  10  301
## 43  41.74  15  301
## 57  52.70  20  301
## 71  60.92  25  301
## 2    4.55   3  303
## 16  10.92   5  303
## 30  29.07  10  303
## 44  42.83  15  303
## 58  53.88  20  303
## 72  63.39  25  303
## 3    4.79   3  305
## 17  11.37   5  305
## 31  30.21  10  305
## 45  44.40  15  305
## 59  55.82  20  305
## 73  64.10  25  305
## 4    3.91   3  307
## 18   9.48   5  307
## 32  25.66  10  307
## 46  39.07  15  307
## 60  50.78  20  307
## 74  59.07  25  307
## 5    4.81   3  309
## 19  11.20   5  309
## 33  28.66  10  309
## 47  41.66  15  309
## 61  53.31  20  309
## 75  63.05  25  309
## 6    3.88   3  311
## 20   9.40   5  311
## 34  25.99  10  311
## 48  39.55  15  311
## 62  51.46  20  311
## 76  59.64  25  311
## 7    4.32   3  315
## 21  10.43   5  315
## 35  27.16  10  315
## 49  40.85  15  315
## 63  51.33  20  315
## 77  60.07  25  315
## 8    4.57   3  319
## 22  10.57   5  319
## 36  27.90  10  319
## 50  41.13  15  319
## 64  52.43  20  319
## 78  60.69  25  319
## 9    3.77   3  321
## 23   9.03   5  321
## 37  25.45  10  321
## 51  38.98  15  321
## 65  49.76  20  321
## 79  60.28  25  321
## 10   4.33   3  323
## 24  10.79   5  323
## 38  28.97  10  323
## 52  42.44  15  323
## 66  53.17  20  323
## 80  61.62  25  323
## 11   4.38   3  325
## 25  10.48   5  325
## 39  27.93  10  325
## 53  40.20  15  325
## 67  50.06  20  325
## 81  58.49  25  325
## 12   4.12   3  327
## 26   9.92   5  327
## 40  26.54  10  327
## 54  37.82  15  327
## 68  48.43  20  327
## 82  56.81  25  327
## 13   3.93   3  329
## 27   9.34   5  329
## 41  26.08  10  329
## 55  37.79  15  329
## 69  48.31  20  329
## 83  56.43  25  329
## 14   3.46   3  331
## 28   9.05   5  331
## 42  25.85  10  331
## 56  39.15  15  331
## 70  49.12  20  331
## 84  59.49  25  331
library(mosaicCalc)
## Loading required package: mosaic
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following object is masked from 'package:ggplot2':
## 
##     stat
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
## Loading required package: mosaicCore
## 
## Attaching package: 'mosaicCore'
## The following objects are masked from 'package:dplyr':
## 
##     count, tally
## 
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
## 
##     D
gf_point(height ~ age, data=datasets::Loblolly)

library(mosaicCalc)
gf_point(Seed ~ age, data=datasets::Loblolly)

Cherry <- datasets::trees
gf_point(Volume ~ Girth, data = Cherry)

datasets::trees
##    Girth Height Volume
## 1    8.3     70   10.3
## 2    8.6     65   10.3
## 3    8.8     63   10.2
## 4   10.5     72   16.4
## 5   10.7     81   18.8
## 6   10.8     83   19.7
## 7   11.0     66   15.6
## 8   11.0     75   18.2
## 9   11.1     80   22.6
## 10  11.2     75   19.9
## 11  11.3     79   24.2
## 12  11.4     76   21.0
## 13  11.4     76   21.4
## 14  11.7     69   21.3
## 15  12.0     75   19.1
## 16  12.9     74   22.2
## 17  12.9     85   33.8
## 18  13.3     86   27.4
## 19  13.7     71   25.7
## 20  13.8     64   24.9
## 21  14.0     78   34.5
## 22  14.2     80   31.7
## 23  14.5     74   36.3
## 24  16.0     72   38.3
## 25  16.3     77   42.6
## 26  17.3     81   55.4
## 27  17.5     82   55.7
## 28  17.9     80   58.3
## 29  18.0     80   51.5
## 30  18.0     80   51.0
## 31  20.6     87   77.0
g1 = spliner(Volume ~ Girth, data = Cherry)
## Warning in regularize.values(x, y, ties, missing(ties)): collapsing to unique
## 'x' values
g2 = connector(Volume ~ Girth, data = Cherry)
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## collapsing to unique 'x' values
slice_plot(g1(x) ~ x, domain(x = 8:18)) %>%
  slice_plot(g2(x) ~ x, color ="red") %>%
  gf_point(Volume ~ Girth, data = Cherry) %>%
  gf_labs(x = "Girth (inches)")

g3 <- smoother(Volume ~ Girth, data = Cherry, span=1.5)
gf_point(Volume~Girth, data=Cherry) %>%
  slice_plot(g3(Girth) ~ Girth) %>%
  gf_labs(x = "Girth (inches)")

g4 <- smoother(Volume ~ Girth, data=Cherry, span=1.0)
gf_point(Volume~Girth, data = Cherry) %>%
  slice_plot(g4(Girth) ~ Girth) %>%
  gf_labs(x = "Girth (inches)", y = "Wood volume")

g5 <- smoother(Volume ~ Girth+Height, 
               data = Cherry, span = 1.0)
gf_point(Height ~ Girth, data = Cherry) %>%
  contour_plot(g5(Girth, Height) ~ Girth + Height) %>%
  gf_labs(x = "Girth (inches)", 
          y = "Height (ft)", 
          title = "Volume (ft^3)")

Housing = read.csv("http://www.mosaic-web.org/go/datasets/Income-Housing.csv")
Housing
##   Income IncomePercentile CrimeProblem AbandonedBuildings IncompleteBathroom
## 1   3914                5         39.6               12.6                2.6
## 2  10817               15         32.4               10.0                3.3
## 3  21097               30         26.7                7.1                2.3
## 4  34548               50         23.9                4.1                2.1
## 5  51941               70         21.4                2.3                2.4
## 6  72079               90         19.9                1.2                2.0
##   NoCentralHeat ExposedWires AirConditioning TwoBathrooms MotorVehicle
## 1          32.3          5.5            52.3         13.9         57.3
## 2          34.7          5.0            55.4         16.9         82.1
## 3          28.1          2.4            61.7         24.8         91.7
## 4          21.4          2.1            69.8         39.6         97.0
## 5          14.9          1.4            73.9         51.2         98.0
## 6           9.6          1.0            76.7         73.2         99.0
##   TwoVehicles ClothesWasher ClothesDryer Dishwasher Telephone
## 1        17.3          57.8         37.5       16.5      68.7
## 2        34.3          61.4         38.0       16.0      79.7
## 3        56.4          78.6         62.0       25.8      90.8
## 4        75.3          84.4         75.2       41.6      96.5
## 5        86.6          92.8         88.9       58.2      98.3
## 6        92.9          97.1         95.6       79.7      99.5
##   DoctorVisitsUnder7 DoctorVisits7To18 NoDoctorVisitUnder7 NoDoctorVisit7To18
## 1                3.6               2.6                13.7               31.2
## 2                3.7               2.6                14.9               32.0
## 3                3.6               2.1                13.8               31.4
## 4                4.0               2.3                10.4               27.3
## 5                4.0               2.5                 7.7               23.9
## 6                4.7               3.1                 5.3               17.5