Question 4.3

#Question 4.3

library(GAD)
## Loading required package: matrixStats
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.2 (2022-06-13 22:00:14 UTC) successfully loaded. See ?R.methodsS3 for help.
#Reading the data

#Null Hypothesis, Ho: For all treatments, the τ = 0
#Alternative hypothesis, Ha: At least one of the τ ≠ 0
Bolt <- c(73, 68, 74, 71, 67,
           73, 67, 75, 72, 70,
           75, 68, 78, 73, 68,
           73, 71, 75, 75, 69)

chemical <- c(rep(1,5),rep(2,5), rep(3,5), rep(4,5)) 
Blocks <- c(rep(seq(1,5),4))
chemical <- as.fixed(chemical)
Blocks <- as.fixed(Blocks)
#The model equation is given by:
#Yij = μ + τi + βj + ∈ij
#Where τ1, τ2, τ3, τ4 = effects of the treatments 
#μ = grand mean and 
#β1, β2, β3, β4, β5 = block effects.

#Perform ANOVA
model <- lm(Bolt~chemical+Blocks)
gad(model)
## Analysis of Variance Table
## 
## Response: Bolt
##          Df Sum Sq Mean Sq F value    Pr(>F)    
## chemical  3  12.95   4.317  2.3761    0.1211    
## Blocks    4 157.00  39.250 21.6055 2.059e-05 ***
## Residual 12  21.80   1.817                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Therefore by the ANOVA P value is 0.1211 which is greater than alpha 0.05.Hence we fail to reject the null hypothesis
#By this we can say that treatments do not have any significant effect

Question 4.16

#Question 4.16

#From the given data 
#mean of treatment1 70.6
#mean of treatment2 71.4
#mean of teatment3  72.4
#mean of treatment4 72.6
#Grand mean 71.75
#mean of block1 73.5
#mean of block2 68.5
#mean of block3 75.5
#mean of block4 72.75
#mean of block5 68.5


#Calculating Ti
#t1=Y1..-mu=-1.15
#t2=Y2..-mu=-0.35
#t3=Y3..-mu=0.65
#t4=Y4..-mu=0.85

#Calculating betaj
#b1=Y..1-mu=1.75
#b2=Y..2-Mu=-3.25
#b3=Y..3-mu=3.75
#b4=Y..4-mu=1
#b5=Y..5-mu=-3.25

Question 4.22

#Reading the given data
obs <- c(8,7,1,7,3,11,2,7,3,8,4,9,10,1,5,6,8,6,6,10,4,2,3,8,8)
batch <- c(rep(1,5), rep(2,5), rep(3,5), rep(4,5), rep(5,5))
days <- c(rep(seq(1,5),5))
ingredients <- c("A", "B", "D", "C", "E",
                 "C", "E", "A", "D", "B",
                 "B", "A", "C", "E", "D",
                 "D", "C", "E", "B", "A",
                 "E", "D", "B", "A", "C")

days <- as.factor(days)
batch <- as.factor(batch)
ingedients <- as.factor(ingredients)
Data <- data.frame(obs,batch,days,ingredients)
str(Data)
## 'data.frame':    25 obs. of  4 variables:
##  $ obs        : num  8 7 1 7 3 11 2 7 3 8 ...
##  $ batch      : Factor w/ 5 levels "1","2","3","4",..: 1 1 1 1 1 2 2 2 2 2 ...
##  $ days       : Factor w/ 5 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ...
##  $ ingredients: chr  "A" "B" "D" "C" ...
#Linear model effects equation can be given as
#Yi,j,k = mu+Ti+Bj+ak+Ei,j,k
#Ti is the ingredient effect

#NUll hypothesis:H0:Ti=0
#Alternate Hypothesis:HA:Ti NE 0

aov.model <- aov(obs~ingredients+batch+days,data=Data)
summary(aov.model)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## ingredients  4 141.44   35.36  11.309 0.000488 ***
## batch        4  15.44    3.86   1.235 0.347618    
## days         4  12.24    3.06   0.979 0.455014    
## Residuals   12  37.52    3.13                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Therefore P value is 0.000488 which smaller than alpha 0.05.Hence, we reject the null Hypothesis 
#We conclude that there is significant effect of ingredients on mean reaction times of chemical processes.