Create a table of summary statistics for the level 1 variables.
sumtable(data = hsb, vars = c("minority", "female", "ses", "mathach"))
| Variable | N | Mean | Std. Dev. | Min | Pctl. 25 | Pctl. 75 | Max |
|---|---|---|---|---|---|---|---|
| minority | 7185 | 0.275 | 0.446 | 0 | 0 | 1 | 1 |
| female | 7185 | 0.528 | 0.499 | 0 | 0 | 1 | 1 |
| ses | 7185 | 0 | 0.779 | -3.758 | -0.538 | 0.602 | 2.692 |
| mathach | 7185 | 12.748 | 6.878 | -2.832 | 7.275 | 18.317 | 24.993 |
1-2 sentences about descriptive stats
Create a table of summary statistics for the level 2 variables.
hsb$schid <- as.factor(hsb$schid)
sumtable(data = hsb, vars = c("schid", "meanses", "size", "sector"))
| Variable | N | Mean | Std. Dev. | Min | Pctl. 25 | Pctl. 75 | Max |
|---|---|---|---|---|---|---|---|
| schid | 7185 | ||||||
| … 1224 | 47 | 0.7% | |||||
| … 1288 | 25 | 0.3% | |||||
| … 1296 | 48 | 0.7% | |||||
| … 1308 | 20 | 0.3% | |||||
| … 1317 | 48 | 0.7% | |||||
| … 1358 | 30 | 0.4% | |||||
| … 1374 | 28 | 0.4% | |||||
| … 1433 | 35 | 0.5% | |||||
| … 1436 | 44 | 0.6% | |||||
| … 1461 | 33 | 0.5% | |||||
| … 1462 | 57 | 0.8% | |||||
| … 1477 | 62 | 0.9% | |||||
| … 1499 | 53 | 0.7% | |||||
| … 1637 | 27 | 0.4% | |||||
| … 1906 | 53 | 0.7% | |||||
| … 1909 | 28 | 0.4% | |||||
| … 1942 | 29 | 0.4% | |||||
| … 1946 | 39 | 0.5% | |||||
| … 2030 | 47 | 0.7% | |||||
| … 2208 | 60 | 0.8% | |||||
| … 2277 | 61 | 0.8% | |||||
| … 2305 | 67 | 0.9% | |||||
| … 2336 | 47 | 0.7% | |||||
| … 2458 | 57 | 0.8% | |||||
| … 2467 | 52 | 0.7% | |||||
| … 2526 | 57 | 0.8% | |||||
| … 2626 | 38 | 0.5% | |||||
| … 2629 | 57 | 0.8% | |||||
| … 2639 | 42 | 0.6% | |||||
| … 2651 | 38 | 0.5% | |||||
| … 2655 | 52 | 0.7% | |||||
| … 2658 | 45 | 0.6% | |||||
| … 2755 | 47 | 0.7% | |||||
| … 2768 | 25 | 0.3% | |||||
| … 2771 | 55 | 0.8% | |||||
| … 2818 | 42 | 0.6% | |||||
| … 2917 | 43 | 0.6% | |||||
| … 2990 | 48 | 0.7% | |||||
| … 2995 | 46 | 0.6% | |||||
| … 3013 | 53 | 0.7% | |||||
| … 3020 | 59 | 0.8% | |||||
| … 3039 | 21 | 0.3% | |||||
| … 3088 | 39 | 0.5% | |||||
| … 3152 | 52 | 0.7% | |||||
| … 3332 | 38 | 0.5% | |||||
| … 3351 | 39 | 0.5% | |||||
| … 3377 | 45 | 0.6% | |||||
| … 3427 | 49 | 0.7% | |||||
| … 3498 | 53 | 0.7% | |||||
| … 3499 | 38 | 0.5% | |||||
| … 3533 | 48 | 0.7% | |||||
| … 3610 | 64 | 0.9% | |||||
| … 3657 | 51 | 0.7% | |||||
| … 3688 | 43 | 0.6% | |||||
| … 3705 | 45 | 0.6% | |||||
| … 3716 | 41 | 0.6% | |||||
| … 3838 | 54 | 0.8% | |||||
| … 3881 | 41 | 0.6% | |||||
| … 3967 | 52 | 0.7% | |||||
| … 3992 | 53 | 0.7% | |||||
| … 3999 | 46 | 0.6% | |||||
| … 4042 | 64 | 0.9% | |||||
| … 4173 | 44 | 0.6% | |||||
| … 4223 | 45 | 0.6% | |||||
| … 4253 | 58 | 0.8% | |||||
| … 4292 | 65 | 0.9% | |||||
| … 4325 | 53 | 0.7% | |||||
| … 4350 | 33 | 0.5% | |||||
| … 4383 | 25 | 0.3% | |||||
| … 4410 | 41 | 0.6% | |||||
| … 4420 | 32 | 0.4% | |||||
| … 4458 | 48 | 0.7% | |||||
| … 4511 | 58 | 0.8% | |||||
| … 4523 | 47 | 0.7% | |||||
| … 4530 | 63 | 0.9% | |||||
| … 4642 | 61 | 0.8% | |||||
| … 4868 | 34 | 0.5% | |||||
| … 4931 | 58 | 0.8% | |||||
| … 5192 | 28 | 0.4% | |||||
| … 5404 | 57 | 0.8% | |||||
| … 5619 | 66 | 0.9% | |||||
| … 5640 | 57 | 0.8% | |||||
| … 5650 | 45 | 0.6% | |||||
| … 5667 | 61 | 0.8% | |||||
| … 5720 | 53 | 0.7% | |||||
| … 5761 | 52 | 0.7% | |||||
| … 5762 | 37 | 0.5% | |||||
| … 5783 | 29 | 0.4% | |||||
| … 5815 | 25 | 0.3% | |||||
| … 5819 | 50 | 0.7% | |||||
| … 5838 | 31 | 0.4% | |||||
| … 5937 | 29 | 0.4% | |||||
| … 6074 | 56 | 0.8% | |||||
| … 6089 | 33 | 0.5% | |||||
| … 6144 | 43 | 0.6% | |||||
| … 6170 | 21 | 0.3% | |||||
| … 6291 | 35 | 0.5% | |||||
| … 6366 | 58 | 0.8% | |||||
| … 6397 | 60 | 0.8% | |||||
| … 6415 | 54 | 0.8% | |||||
| … 6443 | 30 | 0.4% | |||||
| … 6464 | 29 | 0.4% | |||||
| … 6469 | 57 | 0.8% | |||||
| … 6484 | 35 | 0.5% | |||||
| … 6578 | 56 | 0.8% | |||||
| … 6600 | 56 | 0.8% | |||||
| … 6808 | 44 | 0.6% | |||||
| … 6816 | 55 | 0.8% | |||||
| … 6897 | 49 | 0.7% | |||||
| … 6990 | 53 | 0.7% | |||||
| … 7011 | 33 | 0.5% | |||||
| … 7101 | 28 | 0.4% | |||||
| … 7172 | 44 | 0.6% | |||||
| … 7232 | 52 | 0.7% | |||||
| … 7276 | 53 | 0.7% | |||||
| … 7332 | 48 | 0.7% | |||||
| … 7341 | 51 | 0.7% | |||||
| … 7342 | 58 | 0.8% | |||||
| … 7345 | 56 | 0.8% | |||||
| … 7364 | 44 | 0.6% | |||||
| … 7635 | 51 | 0.7% | |||||
| … 7688 | 54 | 0.8% | |||||
| … 7697 | 32 | 0.4% | |||||
| … 7734 | 22 | 0.3% | |||||
| … 7890 | 51 | 0.7% | |||||
| … 7919 | 37 | 0.5% | |||||
| … 8009 | 47 | 0.7% | |||||
| … 8150 | 44 | 0.6% | |||||
| … 8165 | 49 | 0.7% | |||||
| … 8175 | 33 | 0.5% | |||||
| … 8188 | 30 | 0.4% | |||||
| … 8193 | 43 | 0.6% | |||||
| … 8202 | 35 | 0.5% | |||||
| … 8357 | 27 | 0.4% | |||||
| … 8367 | 14 | 0.2% | |||||
| … 8477 | 37 | 0.5% | |||||
| … 8531 | 41 | 0.6% | |||||
| … 8627 | 53 | 0.7% | |||||
| … 8628 | 61 | 0.8% | |||||
| … 8707 | 48 | 0.7% | |||||
| … 8775 | 48 | 0.7% | |||||
| … 8800 | 32 | 0.4% | |||||
| … 8854 | 32 | 0.4% | |||||
| … 8857 | 64 | 0.9% | |||||
| … 8874 | 36 | 0.5% | |||||
| … 8946 | 58 | 0.8% | |||||
| … 8983 | 51 | 0.7% | |||||
| … 9021 | 56 | 0.8% | |||||
| … 9104 | 55 | 0.8% | |||||
| … 9158 | 53 | 0.7% | |||||
| … 9198 | 31 | 0.4% | |||||
| … 9225 | 36 | 0.5% | |||||
| … 9292 | 19 | 0.3% | |||||
| … 9340 | 29 | 0.4% | |||||
| … 9347 | 57 | 0.8% | |||||
| … 9359 | 53 | 0.7% | |||||
| … 9397 | 47 | 0.7% | |||||
| … 9508 | 35 | 0.5% | |||||
| … 9550 | 29 | 0.4% | |||||
| … 9586 | 59 | 0.8% | |||||
| meanses | 7185 | 0.006 | 0.414 | -1.188 | -0.317 | 0.333 | 0.831 |
| size | 7185 | 1056.862 | 604.172 | 100 | 565 | 1436 | 2713 |
| sector | 7185 | 0.493 | 0.5 | 0 | 0 | 1 | 1 |
1-2 sentences about descriptive stats
Estimate an “empty” random intercept model that allows you to estimate the ICC of mathematics achievement across schools. Report and interpret the ICC.
m.empty <- lmer(mathach ~ 1 + (1 | schid), data = hsb, REML = F)
summary(m.empty)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
## method [lmerModLmerTest]
## Formula: mathach ~ 1 + (1 | schid)
## Data: hsb
##
## AIC BIC logLik deviance df.resid
## 47121.8 47142.4 -23557.9 47115.8 7182
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.06262 -0.75365 0.02676 0.76070 2.74184
##
## Random effects:
## Groups Name Variance Std.Dev.
## schid (Intercept) 8.553 2.925
## Residual 39.148 6.257
## Number of obs: 7185, groups: schid, 160
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 12.6371 0.2436 157.6209 51.87 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
prop_between <- 8.553
prop_within <- 39.148
(ICC <- (prop_between / (prop_within + prop_between)))
## [1] 0.1793044
ANSWER: the icc describes how much of the variance in the outcome, math achievement, is between vs. within groups. In this case the ICC = .179, meaning some of our observations are from the same clusters and we should calculate an effective sample size (N_effective = 244).
n_j <- 160 #160 schools
(Deff <- 1 + (n_j - 1) * ICC) #29.87
## [1] 29.5094
N <- 7185
(N_effect <- N /Deff)
## [1] 243.4817
Estimate a regular OLS regression model predicting math achievement from students’ family SES and then estimate a random-intercept model predicting math achievement from students’ family SES. Create a regression table to compare the models and briefly comment on what you notice about similarities and differences between the two models.
m.ols <- lm(mathach ~ ses, data = hsb)
m.mlm <- lmer(mathach ~ ses + (1 | schid), data = hsb, REML = F)
tab_model(m.ols, m.mlm)
| mathach | mathach | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 12.75 | 12.60 – 12.90 | <0.001 | 12.66 | 12.29 – 13.02 | <0.001 |
| ses | 3.18 | 2.99 – 3.37 | <0.001 | 2.39 | 2.18 – 2.60 | <0.001 |
| Random Effects | ||||||
| σ2 | 37.03 | |||||
| τ00 | 4.73 schid | |||||
| ICC | 0.11 | |||||
| N | 160 schid | |||||
| Observations | 7185 | 7185 | ||||
| R2 / R2 adjusted | 0.130 / 0.130 | 0.077 / 0.181 | ||||
ANSWER: Both models include the same number of observations and generally the same conclusion–that family SES significantly predicts math achievement. Yet, beyond these two points, most everything else is different, if only slightly. The intercept in the MLM model slightly decreases from the OLS while the slope increases. The MLM model also includes random effects which account for a portion of the error variance not accounted for in the OLS model. This includes the estimated variance of group means for schools (4.37), estimated variance of within group residuals (37.03).
Estimate a random intercept model predicting math achievement from SES that allows you to estimate both the within-school and between-school association between SES and math achievement. Interpret the within-school coefficient and the between-school coefficient. Indicate whether these associations are statistically significantly different. What can you conclude from this analysis? Your answer should also address the idea of the “contextual” effect of SES on math achievement.
## meanses: within school mean SES (to create ses.cwc)
## want level 1 SES, and school level as predictor
## BIG Q: how do you center level 1 SES?
hsb$ses.cwc <- hsb$ses - hsb$meanses # centering within cluster
hsb$ses.gmc <- hsb$ses - mean(hsb$ses) # grand mean centering
m.a2 <- lmer(mathach ~ 1 + ses.cwc + (1 | schid), data = hsb, REML = F)
m.a3 <- lmer(mathach ~ 1 + ses.cwc + meanses + (1 | schid), data = hsb, REML = F)
tab_model(m.a2, m.a3,
string.est = "Coef (s.e.)",
show.ci = F,
show.p = F,
linebreak = F,
collapse.se = T,
show.dev = T)
| mathach | mathach | |
|---|---|---|
| Predictors | Coef (s.e.) | Coef (s.e.) |
| (Intercept) | 12.65 (0.24) | 12.66 (0.15) |
| ses.cwc | 2.19 (0.11) | 2.19 (0.11) |
| meanses | 5.87 (0.36) | |
| Random Effects | ||
| σ2 | 37.01 | 37.01 |
| τ00 | 8.61 schid | 2.65 schid |
| ICC | 0.19 | 0.07 |
| N | 160 schid | 160 schid |
| Observations | 7185 | 7185 |
| Marginal R2 / Conditional R2 | 0.044 / 0.224 | 0.167 / 0.223 |
| Deviance | 46720.413 | 46563.805 |
i = student, s = school
\(ses.cwc\) = \(ses_{is}\) - \(mean(ses_{.s})\)
\(mathAch_{is}\) = \(\gamma_{00}\) + \(\gamma_{10}\)(\(ses.cwc\)) + \(\gamma_{01}\)(\(mean(ses_{.s})\)) + \(u_{0s}\) + \(u_{1s}\)(\(ses.cwc\)) + \(\epsilon_{is}\)
The within coefficient (\(\gamma_{10}\) = \(\beta^w\) = 2.19) represents the different in math achievement scores between two students in the same school who differ on 1 unit on SES.
Between coefficient (\(\gamma_{01}\) = \(\beta^b\) = 5.87) represents the expected different between the means of two schools which differ by 1 unit in average SES.
The “contextual” effect is the expected difference in the math achievement between two students who have the same individual SES, but who attend schools differing by one unit in the mean SES. This indicates the increment by learning that accrues by virtue of being educated in one schoool vs. another that are 1 unit separate from each other.
\(\beta^c\) = \(\beta^b\) -\(\beta^w\) = 3.68
to test if there is a significant difference between \(\beta^b\) and \(\beta^w\), I need to run a GMC model to test \(H_0\): \(\gamma_{01}\) = 0
m.a3 <- lmer(mathach ~ 1 + ses.gmc + meanses + (1 | schid), data = hsb, REML = F)
summary(m.a3)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
## method [lmerModLmerTest]
## Formula: mathach ~ 1 + ses.gmc + meanses + (1 | schid)
## Data: hsb
##
## AIC BIC logLik deviance df.resid
## 46573.8 46608.2 -23281.9 46563.8 7180
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.1675 -0.7257 0.0176 0.7553 2.9445
##
## Random effects:
## Groups Name Variance Std.Dev.
## schid (Intercept) 2.647 1.627
## Residual 37.014 6.084
## Number of obs: 7185, groups: schid, 160
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 12.6619 0.1484 155.6420 85.317 <2e-16 ***
## ses.gmc 2.1912 0.1087 7022.4974 20.165 <2e-16 ***
## meanses 3.6745 0.3754 184.9826 9.788 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) ss.gmc
## ses.gmc 0.004
## meanses -0.005 -0.289
We find that the slope is significantly different from zero, so \(\beta^b\) is significantly larger than \(\beta^w\) by 3.68 units.
Estimate conditional models (model with x variables) with the following variables:
#school centering for minority (because already have this for SES)
hsb <- hsb%>%
group_by(schid)%>% #grouping by school ID
mutate(
meanminority = mean(minority), #get proportion minority in each school
minority.cwc = minority - meanminority #center within school
)%>%
ungroup()
#Model 1: fit a random-int model (all slopes fixed)
m.6.1 <- lmer(mathach ~ 1 + ses.cwc + minority.cwc + meanses + sector +
(1 | schid), data = hsb, REML = F)
#Model 2: fit a random-coef model allowing both level-1 slopes to vary randomly.
m.6.2 <- lmer(mathach ~ 1 + ses.cwc + minority.cwc + meanses + sector +
(minority.cwc + ses.cwc | schid), data = hsb, REML = F)
## boundary (singular) fit: see ?isSingular
tab_model(m.6.1, m.6.2,
string.est = "Coef (s.e.)",
show.ci = F,
show.p = T,
linebreak = F,
collapse.se = T,
show.dev = T)
| mathach | mathach | |||
|---|---|---|---|---|
| Predictors | Coef (s.e.) | p | Coef (s.e.) | p |
| (Intercept) | 12.11 (0.20) | <0.001 | 12.04 (0.20) | <0.001 |
| ses.cwc | 1.95 (0.11) | <0.001 | 1.94 (0.12) | <0.001 |
| minority.cwc | -2.90 (0.22) | <0.001 | -2.95 (0.26) | <0.001 |
| meanses | 5.34 (0.37) | <0.001 | 5.22 (0.36) | <0.001 |
| sector | 1.22 (0.30) | <0.001 | 1.39 (0.30) | <0.001 |
| Random Effects | ||||
| σ2 | 36.13 | 35.66 | ||
| τ00 | 2.33 schid | 2.36 schid | ||
| τ11 | 1.97 schid.minority.cwc | |||
| 0.46 schid.ses.cwc | ||||
| ρ01 | -0.05 | |||
| 0.27 | ||||
| ICC | 0.06 | 0.07 | ||
| N | 160 schid | 160 schid | ||
| Observations | 7185 | 7185 | ||
| Marginal R2 / Conditional R2 | 0.193 / 0.242 | 0.193 / 0.252 | ||
| Deviance | 46377.412 | 46356.097 | ||
anova(m.6.1, m.6.2)
Focusing on Model 2, interpret the estimated regression coefficients. Is there evidence of variation in the following quantities across schools: 1) racial inequality as measured by the difference between scores for minority and non-minority students 2) socioeconomic inequality as measured by differences in scores across SES levels?
Yes, there is evidence for variation in math achievement scores for centered within cluster minority vs. non-minority, B = -2.95, SE = 0.12, p < .001, such that as the proportion of minority students moves from 0 to 1 there is a 2.95 units score decrease in math achievement.
Yes, there’s evidence for variation in math achievement scores for centered within cluster SES across schools, B = 1.94, SE = 0.12, p < .001. This means that as you move 1 unit up in school SES, there is a 1.94 unit increase for average math achievement scores.
Compared to the model that solely includes random intercepts, the model that includes random slopes significantly improves predictive power. Comparing the two models, there is a significant difference in the models, p < .001, AIC decreases by 11 units and deviance decreases by 21.32 units when moving from the intercept only model to the slope model.
Now extend Model 2 from question 6 so that you can answer the question: are there differences in either the racial/ethnic inequality or SES differentiation across school sectors? Estimate an appropriate MLM. Interpret the fixed effects estimates and appropriate variance components. Summarize your conclusions from the results.
m.7.1 <- lmer(mathach ~ 1 + (ses.cwc + minority.cwc) * sector + meanses +
(minority.cwc + ses.cwc | schid), data = hsb, REML = F)
tab_model(
m.6.2, m.7.1,
string.est = "Coef (s.e.)",
show.p = T,
show.ci = F,
linebreak = F,
collapse.se = T,
show.aic = T,
show.dev = T
)
| mathach | mathach | |||
|---|---|---|---|---|
| Predictors | Coef (s.e.) | p | Coef (s.e.) | p |
| (Intercept) | 12.04 (0.20) | <0.001 | 12.09 (0.20) | <0.001 |
| ses.cwc | 1.94 (0.12) | <0.001 | 2.37 (0.15) | <0.001 |
| minority.cwc | -2.95 (0.26) | <0.001 | -3.92 (0.34) | <0.001 |
| meanses | 5.22 (0.36) | <0.001 | 5.20 (0.36) | <0.001 |
| sector | 1.39 (0.30) | <0.001 | 1.26 (0.30) | <0.001 |
| ses.cwc * sector | -1.03 (0.23) | <0.001 | ||
| minority.cwc * sector | 2.05 (0.48) | <0.001 | ||
| Random Effects | ||||
| σ2 | 35.66 | 35.67 | ||
| τ00 | 2.36 schid | 2.35 schid | ||
| τ11 | 1.97 schid.minority.cwc | 0.85 schid.minority.cwc | ||
| 0.46 schid.ses.cwc | 0.20 schid.ses.cwc | |||
| ρ01 | -0.05 | -0.09 | ||
| 0.27 | 0.40 | |||
| ICC | 0.07 | 0.07 | ||
| N | 160 schid | 160 schid | ||
| Observations | 7185 | 7185 | ||
| Marginal R2 / Conditional R2 | 0.193 / 0.252 | 0.195 / 0.248 | ||
| Deviance | 46356.097 | 46320.754 | ||
| AIC | 46380.097 | 46348.754 | ||
anova(m.6.2, m.7.1)
plot_model(m.7.1, type = "pred", terms = c("minority.cwc", "sector")) + theme_bw()
plot_model(m.7.1, type = "pred", terms = c("ses.cwc", "sector")) + theme_bw()
Yes, there is an interaction between minority vs. non-minority status by school sector, B = 2.05, SE = 0.48, p < .001. Specifically, as you move from a Catholic school to a public school, the strength of the relationship between minority status and math achievement increases by 2.05 units. There is also a significant interaction between SES and sector, B = -1.03, SE = 0.23, p < .001, such that SES has a 1.03 greater impact on match achievement in public schools compared with catholic schools.
interpret variance components
\(\sigma^2\)
\(\tau_{00}\)
\(\tau_{11}\)
Calculate and interpret a measure of R^2 that quantifies the proportion of variation in level-1 student math scores explained by the model.
tab_model(
m.empty, m.7.1,
string.est = "Coef (s.e.)",
show.p = T,
show.ci = F,
linebreak = F,
collapse.se = T
)
| mathach | mathach | |||
|---|---|---|---|---|
| Predictors | Coef (s.e.) | p | Coef (s.e.) | p |
| (Intercept) | 12.64 (0.24) | <0.001 | 12.09 (0.20) | <0.001 |
| ses.cwc | 2.37 (0.15) | <0.001 | ||
| minority.cwc | -3.92 (0.34) | <0.001 | ||
| sector | 1.26 (0.30) | <0.001 | ||
| meanses | 5.20 (0.36) | <0.001 | ||
| ses.cwc * sector | -1.03 (0.23) | <0.001 | ||
| minority.cwc * sector | 2.05 (0.48) | <0.001 | ||
| Random Effects | ||||
| σ2 | 39.15 | 35.67 | ||
| τ00 | 8.55 schid | 2.35 schid | ||
| τ11 | 0.85 schid.minority.cwc | |||
| 0.20 schid.ses.cwc | ||||
| ρ01 | -0.09 | |||
| 0.40 | ||||
| ICC | 0.18 | 0.07 | ||
| N | 160 schid | 160 schid | ||
| Observations | 7185 | 7185 | ||
| Marginal R2 / Conditional R2 | 0.000 / 0.179 | 0.195 / 0.248 | ||
sigma_sq_8 <- 39.15
sigma_sq_7 <- 35.67
(R_sq <- (sigma_sq_8 - sigma_sq_7)/sigma_sq_8)
## [1] 0.08888889
This means that our level 1 variables in this model explain around 8.9% of the variation in student math scores.
Calculate and interpret a measure of R^2 that quantifies the proportion of variation in school-level SES differentiation that is explained by school sector.
tab_model(
m.6.2, m.7.1,
string.est = "Coef (s.e.)",
show.p = T,
show.ci = F,
linebreak = F,
collapse.se = T
)
| mathach | mathach | |||
|---|---|---|---|---|
| Predictors | Coef (s.e.) | p | Coef (s.e.) | p |
| (Intercept) | 12.04 (0.20) | <0.001 | 12.09 (0.20) | <0.001 |
| ses.cwc | 1.94 (0.12) | <0.001 | 2.37 (0.15) | <0.001 |
| minority.cwc | -2.95 (0.26) | <0.001 | -3.92 (0.34) | <0.001 |
| meanses | 5.22 (0.36) | <0.001 | 5.20 (0.36) | <0.001 |
| sector | 1.39 (0.30) | <0.001 | 1.26 (0.30) | <0.001 |
| ses.cwc * sector | -1.03 (0.23) | <0.001 | ||
| minority.cwc * sector | 2.05 (0.48) | <0.001 | ||
| Random Effects | ||||
| σ2 | 35.66 | 35.67 | ||
| τ00 | 2.36 schid | 2.35 schid | ||
| τ11 | 1.97 schid.minority.cwc | 0.85 schid.minority.cwc | ||
| 0.46 schid.ses.cwc | 0.20 schid.ses.cwc | |||
| ρ01 | -0.05 | -0.09 | ||
| 0.27 | 0.40 | |||
| ICC | 0.07 | 0.07 | ||
| N | 160 schid | 160 schid | ||
| Observations | 7185 | 7185 | ||
| Marginal R2 / Conditional R2 | 0.193 / 0.252 | 0.195 / 0.248 | ||
t_11_6 <- .46
t_11_7 <- .20
((t_11_6 - t_11_7)/t_11_6)
## [1] 0.5652174
Around 56.5% of the variation in SES is explained by school sector.
Create and interpret:
Explain why these plots are relevant to the use of the MLM in this section.
QQ plots help us determine if our model violates assumptions about error variance being distributed normally. First, our level 1 residual error seems to be more or less distributed normally, but could be slightly light tailed. Second, the level 2 residuals look similar but there are fewer data points near the higher and lower limits of the data set which makes it more difficult to conclude there is a light tail for error variance–rather it could just be some outliers.
resid.L1 <- resid(m.7.1)
resid.L2 <- ranef(m.7.1)
resid.L2 <- (resid.L2$schid)
qqnorm(resid.L1)
qqline(resid.L1, col = "purple")
qqnorm(resid.L2$`(Intercept)`)
qqline(resid.L2$`(Intercept)`, col = "red")
qqnorm(resid.L2$minority.cwc)
qqline(resid.L2$minority.cwc, col = "green")
qqnorm(resid.L2$ses.cwc)
qqline(resid.L2$ses.cwc, col = "blue")