Descargar los datos y hacer análisis descriptivo.

library(glmtoolbox)
library(MASS)
data("quine")
View(quine)
library(ggplot2)
ggplot(data = quine,mapping = aes(x=Eth,Days))+geom_boxplot(mapping = aes(x=Eth,Days), col="green")

ggplot(data = quine,mapping = aes(x=Age,y=Days))+geom_boxplot(mapping = aes(x=Age,Days), col="#C710F0")

ggplot(data = quine,mapping = aes(x=Sex,y=Days))+geom_boxplot(mapping = aes(x=Sex,Days), col="#F05010")

ggplot(data = quine,mapping = aes(x=Lrn,y=Days))+geom_boxplot(mapping = aes(x=Lrn,y=Days), col="#58D68D")

#B) Poisson

mod<-glm(Days ~ 1+ Eth*Age + Sex + Lrn, family = poisson(link="log"),data = quine)
summary(mod)
## 
## Call:
## glm(formula = Days ~ 1 + Eth * Age + Sex + Lrn, family = poisson(link = "log"), 
##     data = quine)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -6.5817  -2.8466  -0.8881   1.7952   8.2457  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  2.39776    0.08376  28.626  < 2e-16 ***
## EthN         0.13576    0.10041   1.352 0.176379    
## AgeF1        0.11939    0.09509   1.255 0.209306    
## AgeF2        0.74159    0.08561   8.662  < 2e-16 ***
## AgeF3        0.52651    0.09605   5.482 4.21e-08 ***
## SexM         0.16296    0.04274   3.813 0.000138 ***
## LrnSL        0.35793    0.05211   6.869 6.46e-12 ***
## EthN:AgeF1  -1.02887    0.13649  -7.538 4.78e-14 ***
## EthN:AgeF2  -1.23462    0.12828  -9.624  < 2e-16 ***
## EthN:AgeF3  -0.17669    0.12755  -1.385 0.165966    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 2073.5  on 145  degrees of freedom
## Residual deviance: 1542.8  on 136  degrees of freedom
## AIC: 2151.3
## 
## Number of Fisher Scoring iterations: 5

Este resultado nos pone a pensar ya que en el análisis descriptivo no se notaba dependencias significativas. El problema es que existe evidencia de sobre dispersión ya que:

# Estimación del parámetro de dispersión

phi = 1542.8/136
phi
## [1] 11.34412

Se dice que existe sobre dispersión.

#C) Binomial negativa

mod1<-overglm(Days ~ 1+ Eth*Age + Sex + Lrn, family =" nb1(log)",data = quine)
summary(mod1)
## 
## Sample size: 146 
##      Family: Negative Binomial type I with log link
## *************************************************************
##             Estimate Std.Error  z-value   Pr(>|z|)
## (Intercept)  2.53409   0.26142  9.69368 < 2.22e-16
## EthN         0.05698   0.34740  0.16402  0.8697159
## AgeF1        0.08732   0.33725  0.25892  0.7956991
## AgeF2        0.70638   0.32864  2.14940  0.0316030
## AgeF3        0.40050   0.33257  1.20428  0.2284819
## SexM         0.11275   0.15912  0.70863  0.4785551
## LrnSL        0.22754   0.18186  1.25116  0.2108767
## EthN:AgeF1  -0.89843   0.44391 -2.02391  0.0429792
## EthN:AgeF2  -1.18060   0.44722 -2.63985  0.0082942
## EthN:AgeF3  -0.10128   0.46350 -0.21850  0.8270373
##                                                   
## phi          0.72470   0.09346                    
## *************************************************************
##                  -2*log-likelihood:  1082.688 
##                                AIC:  1104.688 
##                                BIC:  1137.508
mod2<-overglm(Days ~ 1+ Eth*Age + Sex + Lrn, family =" nb2(log)",data = quine)
summary(mod2)
## 
## Sample size: 146 
##      Family: Negative Binomial type II with log link
## *************************************************************
##             Estimate Std.Error  z-value Pr(>|z|)
## (Intercept)  2.56503   0.25752  9.96046  < 2e-16
## EthN        -0.08293   0.31219 -0.26564 0.790519
## AgeF1        0.14901   0.27278  0.54627 0.584881
## AgeF2        0.64724   0.25419  2.54625 0.010889
## AgeF3        0.33543   0.29845  1.12389 0.261058
## SexM         0.12328   0.13553  0.90962 0.363021
## LrnSL        0.20170   0.15759  1.27987 0.200591
## EthN:AgeF1  -0.59411   0.39844 -1.49110 0.135936
## EthN:AgeF2  -0.93940   0.39575 -2.37375 0.017609
## EthN:AgeF3  -0.02794   0.40559 -0.06888 0.945083
##                                                 
## phi         11.72217   1.73654                  
## *************************************************************
##                  -2*log-likelihood:  1086.893 
##                                AIC:  1108.893 
##                                BIC:  1141.713
envelope(mod2)
## 
  |                               
  |                         |   0%
  |                               
  |+                        |   4%
  |                               
  |++                       |   8%
  |                               
  |+++                      |  12%
  |                               
  |++++                     |  16%
  |                               
  |+++++                    |  20%
  |                               
  |++++++                   |  24%
  |                               
  |+++++++                  |  28%
  |                               
  |++++++++                 |  32%
  |                               
  |+++++++++                |  36%
  |                               
  |++++++++++               |  40%
  |                               
  |+++++++++++              |  44%
  |                               
  |++++++++++++             |  48%
  |                               
  |+++++++++++++            |  52%
  |                               
  |++++++++++++++           |  56%
  |                               
  |+++++++++++++++          |  60%
  |                               
  |++++++++++++++++         |  64%
  |                               
  |+++++++++++++++++        |  68%
  |                               
  |++++++++++++++++++       |  72%
  |                               
  |+++++++++++++++++++      |  76%
  |                               
  |++++++++++++++++++++     |  80%
  |                               
  |+++++++++++++++++++++    |  84%
  |                               
  |++++++++++++++++++++++   |  88%
  |                               
  |+++++++++++++++++++++++  |  92%
  |                               
  |++++++++++++++++++++++++ |  96%
  |                               
  |+++++++++++++++++++++++++| 100%

mod3<-overglm(Days ~ 1+ Eth*Age + Sex + Lrn, family =" nbf(log)",data = quine)
summary(mod3)
## 
## Sample size: 146 
##      Family: Negative Binomial with log link
## *************************************************************
##             Estimate Std.Error  z-value Pr(>|z|)
## (Intercept)  2.51974   0.26714  9.43225  < 2e-16
## EthN         0.01963   0.34349  0.05716 0.954416
## AgeF1        0.11121   0.32957  0.33743 0.735794
## AgeF2        0.71547   0.31223  2.29152 0.021933
## AgeF3        0.40551   0.32826  1.23533 0.216706
## SexM         0.12824   0.15400  0.83272 0.405005
## LrnSL        0.24989   0.18042  1.38510 0.166023
## EthN:AgeF1  -0.87691   0.44196 -1.98413 0.047242
## EthN:AgeF2  -1.17630   0.43890 -2.68015 0.007359
## EthN:AgeF3  -0.08468   0.45143 -0.18757 0.851211
##                                                 
## phi          1.42088   1.20055                  
## tau         -0.24657   0.30491 -0.80866 0.418708
## *************************************************************
##                  -2*log-likelihood:  1082.048 
##                                AIC:  1106.048 
##                                BIC:  1141.851
# Como tou no es significativamente diferente de cero, etnonces el mejor modelo de conteo es el binomial negativo 1. 
summary(mod1)
## 
## Sample size: 146 
##      Family: Negative Binomial type I with log link
## *************************************************************
##             Estimate Std.Error  z-value   Pr(>|z|)
## (Intercept)  2.53409   0.26142  9.69368 < 2.22e-16
## EthN         0.05698   0.34740  0.16402  0.8697159
## AgeF1        0.08732   0.33725  0.25892  0.7956991
## AgeF2        0.70638   0.32864  2.14940  0.0316030
## AgeF3        0.40050   0.33257  1.20428  0.2284819
## SexM         0.11275   0.15912  0.70863  0.4785551
## LrnSL        0.22754   0.18186  1.25116  0.2108767
## EthN:AgeF1  -0.89843   0.44391 -2.02391  0.0429792
## EthN:AgeF2  -1.18060   0.44722 -2.63985  0.0082942
## EthN:AgeF3  -0.10128   0.46350 -0.21850  0.8270373
##                                                   
## phi          0.72470   0.09346                    
## *************************************************************
##                  -2*log-likelihood:  1082.688 
##                                AIC:  1104.688 
##                                BIC:  1137.508
stepCriterion(mod1,criterion="aic",direction="forward")
## 
##        Family:  Negative Binomial I 
## Link function:  log 
## 
## Initial model:
## ~ 1 
## 
## 
## Step 0 :
##            df    AIC    BIC P(Chisq>)(*)
## + Eth       1 1112.6 1121.6    0.0005027
## + Age       3 1117.8 1132.7    0.0109613
## <none>        1122.3 1128.2             
## + Sex       1 1123.3 1132.2    0.3192143
## + Lrn       1 1124.0 1132.9    0.5911313
## 
## Step 1 : + Eth 
## 
##            df    AIC    BIC P(Chisq>)(*)
## + Age       3 1107.8 1125.7     0.008401
## <none>        1112.6 1121.6             
## + Sex       1 1112.9 1124.8     0.182067
## + Lrn       1 1114.6 1126.5     0.810363
## 
## Step 2 : + Age 
## 
##            df    AIC    BIC P(Chisq>)(*)
## + Age:Eth   3 1102.6 1129.5    0.0082808
## + Lrn       1 1107.4 1128.3    0.1176848
## <none>        1107.8 1125.7             
## + Sex       1 1109.7 1130.5    0.6999193
## - Eth       1 1117.8 1132.7    0.0004077
## 
## Step 3 : + Age:Eth 
## 
##            df    AIC    BIC P(Chisq>)(*)
## <none>        1102.6 1129.5             
## + Lrn       1 1103.2 1133.0       0.2251
## + Sex       1 1104.2 1134.1       0.5223
## 
## 
## Final model:
## ~ Eth + Age + Eth:Age 
## 
## ****************************************************************************
## (*) p-values of the Wald test
stepCriterion(mod1,criterion="bic",direction="forward")
## 
##        Family:  Negative Binomial I 
## Link function:  log 
## 
## Initial model:
## ~ 1 
## 
## 
## Step 0 :
##            df    AIC    BIC P(Chisq>)(*)
## + Eth       1 1112.6 1121.6    0.0005027
## <none>        1122.3 1128.2             
## + Sex       1 1123.3 1132.2    0.3192143
## + Age       3 1117.8 1132.7    0.0109613
## + Lrn       1 1124.0 1132.9    0.5911313
## 
## Step 1 : + Eth 
## 
##            df    AIC    BIC P(Chisq>)(*)
## <none>        1112.6 1121.6             
## + Sex       1 1112.9 1124.8     0.182067
## + Age       3 1107.8 1125.7     0.008401
## + Lrn       1 1114.6 1126.5     0.810363
## 
## 
## Final model:
## ~ Eth 
## 
## ****************************************************************************
## (*) p-values of the Wald test
stepCriterion(mod1,criterion="aic",direction="backward")
## 
##        Family:  Negative Binomial I 
## Link function:  log 
## 
## Initial model:
## ~ 1 + Eth * Age + Sex + Lrn 
## 
## 
## Step 0 :
##            df    AIC    BIC P(Chisq>)(*)
## - Sex       1 1103.2 1133.0      0.47856
## - Lrn       1 1104.2 1134.1      0.21088
## <none>        1104.7 1137.5             
## - Age:Eth   3 1109.2 1133.0      0.01185
## 
## Step 1 : - Sex 
## 
##            df    AIC    BIC P(Chisq>)(*)
## - Lrn       1 1102.6 1129.5      0.22515
## <none>        1103.2 1133.0             
## - Age:Eth   3 1107.4 1128.3      0.01342
## 
## Step 2 : - Lrn 
## 
##            df    AIC    BIC P(Chisq>)(*)
## <none>        1102.6 1129.5             
## + Sex       1 1104.2 1134.1     0.522257
## - Age:Eth   3 1107.8 1125.7     0.008281
## 
## 
## Final model:
## ~ Eth + Age + Eth:Age 
## 
## ****************************************************************************
## (*) p-values of the Wald test
modf1<-overglm(Days ~ 1+ Eth*Age, family =" nb1(log)",data = quine)
summary(modf1)
## 
## Sample size: 146 
##      Family: Negative Binomial type I with log link
## *************************************************************
##             Estimate Std.Error  z-value   Pr(>|z|)
## (Intercept)  2.62801   0.24945 10.53516 < 2.22e-16
## EthN         0.13110   0.34550  0.37944  0.7043597
## AgeF1        0.17838   0.31950  0.55829  0.5766463
## AgeF2        0.82673   0.31724  2.60601  0.0091604
## AgeF3        0.37084   0.33375  1.11115  0.2665030
## EthN:AgeF1  -0.99157   0.43939 -2.25673  0.0240252
## EthN:AgeF2  -1.23924   0.44655 -2.77512  0.0055181
## EthN:AgeF3  -0.17626   0.46361 -0.38020  0.7037984
##                                                   
## phi          0.73671   0.09447                    
## *************************************************************
##                  -2*log-likelihood:  1084.638 
##                                AIC:  1102.638 
##                                BIC:  1129.49
modf2<-overglm(Days ~ 1+ Eth, family =" nb1(log)",data = quine)
summary(modf2)
## 
## Sample size: 146 
##      Family: Negative Binomial type I with log link
## *************************************************************
##             Estimate Std.Error  z-value   Pr(>|z|)
## (Intercept)  3.05550   0.11492 26.58775 < 2.22e-16
## EthN        -0.55556   0.15968 -3.47931 0.00050271
##                                                   
## phi          0.86418   0.10668                    
## *************************************************************
##                  -2*log-likelihood:  1106.634 
##                                AIC:  1112.634 
##                                BIC:  1121.585
chi<-1106-10.84
pchisq(chi,1,lower.tail = T)
## [1] 1
#EL MEJOR MODELO ES EL BN1 HACIENDO USO DE ETH

DIAGNOSTICO DEL MODELO

envelope(modf2)
## 
  |                               
  |                         |   0%
  |                               
  |+                        |   4%
  |                               
  |++                       |   8%
  |                               
  |+++                      |  12%
  |                               
  |++++                     |  16%
  |                               
  |+++++                    |  20%
  |                               
  |++++++                   |  24%
  |                               
  |+++++++                  |  28%
  |                               
  |++++++++                 |  32%
  |                               
  |+++++++++                |  36%
  |                               
  |++++++++++               |  40%
  |                               
  |+++++++++++              |  44%
  |                               
  |++++++++++++             |  48%
  |                               
  |+++++++++++++            |  52%
  |                               
  |++++++++++++++           |  56%
  |                               
  |+++++++++++++++          |  60%
  |                               
  |++++++++++++++++         |  64%
  |                               
  |+++++++++++++++++        |  68%
  |                               
  |++++++++++++++++++       |  72%
  |                               
  |+++++++++++++++++++      |  76%
  |                               
  |++++++++++++++++++++     |  80%
  |                               
  |+++++++++++++++++++++    |  84%
  |                               
  |++++++++++++++++++++++   |  88%
  |                               
  |+++++++++++++++++++++++  |  92%
  |                               
  |++++++++++++++++++++++++ |  96%
  |                               
  |+++++++++++++++++++++++++| 100%

# SEGUNDO EJERCICIO DE MODELOS ESTADÍSTICOS

data("orobanche")
View(orobanche)
data("orobanche")
ggplot(data = orobanche,mapping=aes(x=specie,y=                         germinated/seeds))+geom_boxplot(mapping=aes(x=specie,y=germinated/seeds), col=3)

ggplot(data = orobanche,mapping=aes(x=extract,y=                         germinated/seeds))+geom_boxplot(mapping=aes(x=extract,y=germinated/seeds), col=2)

Como se evidencia dependencia de la proporción con respecto al extracto y tambien a especies, se procede a ajustar un modelo lineal generalizado.

mod<-glm(germinated/seeds~specie*extract,weights= seeds,family = binomial(link="logit"),data=orobanche)
summary(mod)
## 
## Call:
## glm(formula = germinated/seeds ~ specie * extract, family = binomial(link = "logit"), 
##     data = orobanche, weights = seeds)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.01617  -1.24398   0.05995   0.84695   2.12123  
## 
## Coefficients:
##                                     Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                          -0.4122     0.1842  -2.238   0.0252 *
## specieAegyptiaca 75                  -0.1459     0.2232  -0.654   0.5132  
## extractCucumber                       0.5401     0.2498   2.162   0.0306 *
## specieAegyptiaca 75:extractCucumber   0.7781     0.3064   2.539   0.0111 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 98.719  on 20  degrees of freedom
## Residual deviance: 33.278  on 17  degrees of freedom
## AIC: 117.87
## 
## Number of Fisher Scoring iterations: 4
phi=98.719/20
phi
## [1] 4.93595

BETA-BINOMIAL

mod1<-overglm(cbind(germinated,seeds-germinated)~specie*extract,family ="bb(logit)" ,data=orobanche)
summary(mod1)
## 
## Sample size: 21 
##      Family: Beta-Binomial with logit link
## *************************************************************
##                                     Estimate Std.Error  z-value Pr(>|z|)
## (Intercept)                         -0.44456   0.21826 -2.03688 0.041662
## specieAegyptiaca 75                 -0.09739   0.27367 -0.35587 0.721937
## extractCucumber                      0.52214   0.29682  1.75911 0.078559
## specieAegyptiaca 75:extractCucumber  0.79792   0.37795  2.11116 0.034758
##                                                                         
## phi                                  0.01252   0.01164                  
## *************************************************************
##                  -2*log-likelihood:  107.534 
##                                AIC:  117.534 
##                                BIC:  122.756
envelope(mod)
## 
  |                               
  |                         |   0%
  |                               
  |+                        |   4%
  |                               
  |++                       |   8%
  |                               
  |+++                      |  12%
  |                               
  |++++                     |  16%
  |                               
  |+++++                    |  20%
  |                               
  |++++++                   |  24%
  |                               
  |+++++++                  |  28%
  |                               
  |++++++++                 |  32%
  |                               
  |+++++++++                |  36%
  |                               
  |++++++++++               |  40%
  |                               
  |+++++++++++              |  44%
  |                               
  |++++++++++++             |  48%
  |                               
  |+++++++++++++            |  52%
  |                               
  |++++++++++++++           |  56%
  |                               
  |+++++++++++++++          |  60%
  |                               
  |++++++++++++++++         |  64%
  |                               
  |+++++++++++++++++        |  68%
  |                               
  |++++++++++++++++++       |  72%
  |                               
  |+++++++++++++++++++      |  76%
  |                               
  |++++++++++++++++++++     |  80%
  |                               
  |+++++++++++++++++++++    |  84%
  |                               
  |++++++++++++++++++++++   |  88%
  |                               
  |+++++++++++++++++++++++  |  92%
  |                               
  |++++++++++++++++++++++++ |  96%
  |                               
  |+++++++++++++++++++++++++| 100%

Selección de modelos

data("cars")
View(cars)

ANÁLISIS DE SUPERVIVENCIA.

library("survival")
library("survminer")
## Loading required package: ggpubr
## 
## Attaching package: 'survminer'
## The following object is masked from 'package:survival':
## 
##     myeloma
# help(lung)
head(lung, 10)
##    inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
## 1     3  306      2  74   1       1       90       100     1175      NA
## 2     3  455      2  68   1       0       90        90     1225      15
## 3     3 1010      1  56   1       0       90        90       NA      15
## 4     5  210      2  57   1       1       90        60     1150      11
## 5     1  883      2  60   1       0      100        90       NA       0
## 6    12 1022      1  74   1       1       50        80      513       0
## 7     7  310      2  68   2       2       70        60      384      10
## 8    11  361      2  71   2       2       60        80      538       1
## 9     1  218      2  53   1       1       70        80      825      16
## 10    7  166      2  61   1       2       70        70      271      34
with(lung, Surv(time, status))[1:60]
##  [1]  306   455  1010+  210   883  1022+  310   361   218   166   170   654 
## [13]  728    71   567   144   613   707    61    88   301    81   624   371 
## [25]  394   520   574   118   390    12   473    26   533   107    53   122 
## [37]  814   965+   93   731   460   153   433   145   583    95   303   519 
## [49]  643   765   735   189    53   246   689    65     5   132   687   345

Estimador Kaplan-Meier

fit <- survfit(Surv(time, status) ~ sex, data = lung)
print(fit)
## Call: survfit(formula = Surv(time, status) ~ sex, data = lung)
## 
##         n events median 0.95LCL 0.95UCL
## sex=1 138    112    270     212     310
## sex=2  90     53    426     348     550
summary(fit)$table
##       records n.max n.start events    rmean se(rmean) median 0.95LCL 0.95UCL
## sex=1     138   138     138    112 326.0841  22.91156    270     212     310
## sex=2      90    90      90     53 460.6473  34.68985    426     348     550
d <- data.frame(time = fit$time,
n.risk = fit$n.risk,
n.event = fit$n.event,
n.censor = fit$n.censor,
surv = fit$surv,
upper = fit$upper,
lower = fit$lower
)

head(d)
##   time n.risk n.event n.censor      surv     upper     lower
## 1   11    138       3        0 0.9782609 1.0000000 0.9542301
## 2   12    135       1        0 0.9710145 0.9994124 0.9434235
## 3   13    134       2        0 0.9565217 0.9911586 0.9230952
## 4   15    132       1        0 0.9492754 0.9866017 0.9133612
## 5   26    131       1        0 0.9420290 0.9818365 0.9038355
## 6   30    130       1        0 0.9347826 0.9768989 0.8944820
ggsurvplot(fit,

pval = TRUE, conf.int = TRUE,
risk.table = TRUE, # Agregamos la tabla de riesgo
risk.table.col = "strata", # Cambiamos el color de la tabla por grupos
linetype = "strata", # Cambiamos el tipo de línea por grupos
surv.median.line = "hv", # Líneas para la mediana
ggtheme = theme_bw(), # Elegimos el tema de ggplot2
palette = c("#E7B800", "#2E9FDF"))

surv_diff <- survdiff(Surv(time, status) ~ sex, data = lung)
surv_diff
## Call:
## survdiff(formula = Surv(time, status) ~ sex, data = lung)
## 
##         N Observed Expected (O-E)^2/E (O-E)^2/V
## sex=1 138      112     91.6      4.55      10.3
## sex=2  90       53     73.4      5.68      10.3
## 
##  Chisq= 10.3  on 1 degrees of freedom, p= 0.001
alpha <- 0.05
qchisq(p = 1-alpha, df = 1)
## [1] 3.841459

fUNCIÓN DE DISTRIBUCIÓN ACUMULATIVA

ggsurvplot(fit,

conf.int = TRUE,
risk.table.col = "strata", # Colores por grupo
ggtheme = theme_bw(), # Tema de ggplot2
palette = c("#E7B800", "#2E9FDF"),
fun = "event") # Seleccionamos ’event’

fit2 <- survfit( Surv(time, status) ~ sex + ph.ecog, data = lung )
ggsurv <- ggsurvplot(fit2, fun = "event", conf.int = TRUE,

ggtheme = theme_bw())

ggsurv$plot +theme_bw() +
theme (legend.position = "right")+
facet_grid(ph.ecog ~ 1)

# MODELO DE COX PARA ANÁLISIS DE SUPERVIVENCIA.

res.cox<-coxph(Surv(time,status)~sex,data=lung)
res.cox
## Call:
## coxph(formula = Surv(time, status) ~ sex, data = lung)
## 
##        coef exp(coef) se(coef)      z       p
## sex -0.5310    0.5880   0.1672 -3.176 0.00149
## 
## Likelihood ratio test=10.63  on 1 df, p=0.001111
## n= 228, number of events= 165
summary(res.cox)
## Call:
## coxph(formula = Surv(time, status) ~ sex, data = lung)
## 
##   n= 228, number of events= 165 
## 
##        coef exp(coef) se(coef)      z Pr(>|z|)   
## sex -0.5310    0.5880   0.1672 -3.176  0.00149 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##     exp(coef) exp(-coef) lower .95 upper .95
## sex     0.588      1.701    0.4237     0.816
## 
## Concordance= 0.579  (se = 0.021 )
## Likelihood ratio test= 10.63  on 1 df,   p=0.001
## Wald test            = 10.09  on 1 df,   p=0.001
## Score (logrank) test = 10.33  on 1 df,   p=0.001

Modelos básicos

dhyper(2,7,25,5)
## [1] 0.2398498
380/1771
## [1] 0.214568

#Binomial{

dbinom(3,5,1/7)
## [1] 0.02141965
360/16807
## [1] 0.02141965