# Load packages
# Core
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6      ✔ purrr   0.3.4 
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.1      ✔ stringr 1.4.1 
## ✔ readr   2.1.2      ✔ forcats 0.5.2 
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(tidyquant)
## Loading required package: lubridate
## 
## Attaching package: 'lubridate'
## 
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
## 
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## 
## Attaching package: 'xts'
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## 
## Attaching package: 'PerformanceAnalytics'
## 
## The following object is masked from 'package:graphics':
## 
##     legend
## 
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo

Goal

Take raw prices of five individual stocks and transform them into monthly returns five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

1 Import stock prices

# Choose stocks
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
PRICES <- tq_get(x = symbols, 
                 get = "stock.prices", 
                 from = "2012-01-01", 
                 to   = "2017-01-01" )

2 Convert prices to returns

PRICES %>%
    
    group_by(symbol) %>% 
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn,
                 period     = "quarterly",
                 type       = "log") %>%
    ungroup() %>%
    
    set_names(c("assest", "date", "returns"))
## # A tibble: 100 × 3
##    assest date        returns
##    <chr>  <date>        <dbl>
##  1 SPY    2012-03-30  0.104  
##  2 SPY    2012-06-29 -0.0289 
##  3 SPY    2012-09-28  0.0615 
##  4 SPY    2012-12-31 -0.00383
##  5 SPY    2013-03-28  0.0999 
##  6 SPY    2013-06-28  0.0289 
##  7 SPY    2013-09-30  0.0511 
##  8 SPY    2013-12-31  0.100  
##  9 SPY    2014-03-31  0.0169 
## 10 SPY    2014-06-30  0.0503 
## # … with 90 more rows

3 Make plot