# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("ETSY", "AMZN", "ACL", "AMD", "NVDA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "ACL" "AMD" "AMZN" "ETSY" "NVDA"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 ACL 0.25
## 2 AMD 0.25
## 3 AMZN 0.2
## 4 ETSY 0.2
## 5 NVDA 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 0.0149
## 2 2013-02-28 -0.00791
## 3 2013-03-28 0.00252
## 4 2013-04-30 0.0159
## 5 2013-05-31 0.102
## 6 2013-06-28 0.00588
## 7 2013-07-31 -0.0196
## 8 2013-08-30 -0.0594
## 9 2013-09-30 0.0377
## 10 2013-10-31 0.0171
## # … with 50 more rows
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.0504 0.0504
# Mean of Portfolio Returns
portfolio_mean_tidyquant_builtin_percent <-
mean(portfolio_returns_tbl$portfolio.returns)
# Expected Returns vs Risk
sd_mean_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
# Add portfolio sd
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
sd_mean_tbl
## # A tibble: 6 × 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 ACL -0.0074 0.0576
## 2 AMD 0.0242 0.144
## 3 AMZN 0.0257 0.0739
## 4 ETSY -0.0026 0.158
## 5 NVDA 0.0471 0.0881
## 6 Portfolio 0.0138 0.0504
sd_mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset))
How should you expect your portfolio to perform relative to its assets
in the portfolio? Would you invest all your money in any of the
individual stocks instead of the portfolio? Discuss both in terms of
expected return and risk.
My portfolio would fall behind over preforming stocks like AMD and NVDA.
If I could go back in time and invest based off the companies chosen I
would chose to put my money into NVDA, ESTY, and AMD. ETSY would be the
most risky.