This is a valid latin square design. Since all the letters (A,B,C,D,E) appears only once in each row and each column.
The model equation for the latin sqaure design is as follows:
Yij = µ + τi + βj + αk + εijk
Where,
µ = Grand Mean
τi = Treatment effect
βj = Block-1 effect
αk = Block-2 effect
εijk = Random error
i = number of treatments
j = number of blocks
k = replications
Entering Data:
batch <- c(rep(1,5), rep(2,5), rep(3,5), rep(4,5),rep(5,5))
day <- c(rep(seq(1,5),5))
letter <- c("A", "B", "D", "C", "E",
"C", "E", "A", "D", "B",
"B", "A", "C", "E", "D",
"D", "C", "E", "B", "A",
"E", "D", "B", "A", "C")
obs <- c(8,7,1,7,3,
11,2,7,3,8,
4,9,10,1,5,
6,8,6,6,10,
4,2,3,8,8)
batch <- as.factor(batch)
letter <- as.factor(letter)
day <- as.factor(day)
For our ANOVA analysis, we have the following hypothesis:
The Null hypothesis: Ho: τ1 = τ2 = τ3 = τ4 = τ5 = 0 ( \(\forall\) i)
Alternative hypothesis: Ha: One of the τi ≠ 0 ( \(\exists\) i)
Now we perform our ANOVA analysis:
anova <- aov(obs~batch+letter+day)
summary(anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## batch 4 15.44 3.86 1.235 0.347618
## letter 4 141.44 35.36 11.309 0.000488 ***
## day 4 12.24 3.06 0.979 0.455014
## Residuals 12 37.52 3.13
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
From our ANOVA analysis we see that only the letter group has P-value significantly smaller than our threshold alpha = 0.05. This means that we reject our null hypothesis that all the effects of the treatment are equal to each other and equal to zero.
So we conclude that the ingredients (A,B,C,D,E) have significant effect on the reaction time of the chemical process.
batch <- c(rep(1,5), rep(2,5), rep(3,5), rep(4,5),rep(5,5))
day <- c(rep(seq(1,5),5))
letter <- c("A", "B", "D", "C", "E",
"C", "E", "A", "D", "B",
"B", "A", "C", "E", "D",
"D", "C", "E", "B", "A",
"E", "D", "B", "A", "C")
obs <- c(8,7,1,7,3,
11,2,7,3,8,
4,9,10,1,5,
6,8,6,6,10,
4,2,3,8,8)
batch <- as.factor(batch)
letter <- as.factor(letter)
day <- as.factor(day)
anova <- aov(obs~batch+letter+day)
summary(anova)