Regresion logistica para muestra unificada(11 d eoctubre)

El diseño muestral es el que se logró armar considerando los diseños de cada país Finalmente se trabaja con un diseño equivalente a 2 etapas, primera donde las psu son las escuelas, el pais es la variable de estratficacióny se usan como pesos muestrales los que se consideraron en Uruguay (ver diseño de Uruguay y para POA se creó un nuevo vector de peso usando como variables de ajuste distribucion por sexo y por tipo de escuela)

LOs analisis son unificados (no por pais)

names(disenio_urubra$variables) [1] “id” “pais” “ficha”
[4] “eta” “tipoesc” “sexoinv”
[7] “weight” “weight.rec” “numesc”
[10] “numer_esc” “idade” “socioecon4cat”
[13] “socioecon3cat” “escolmae” “escolmae13cat”
[16] “escolmaerecat23cat” “freqescov” “freqescovacat”
[19] “usofio” “freqfio” “usocreme”
[22] “idadcreme” “visidentcatonde” “visiquando”
[25] “fluorprof” “idadefluor” “isg.”
[28] “isg45” “isg20” “cposoms”
[31] “cpodoms” “prevoms” “cposbere”
[34] “cpodbere” “prevbere” “cposicdas”
[37] “cpodicdas” “previcdas”


load("~/Dropbox/odontologia/maestria_anunziatta/BancoUnidoBrasUru/BRASURU(11102013).RData")


library(survey)
## Attaching package: 'survey'
## The following object(s) are masked from 'package:graphics':
## 
## dotchart
library(car)
## Loading required package: MASS
## Loading required package: nnet
# 11 de octubre 2013

modelo0.bin <- svyglm(prevoms ~ pais, disenio_urubra, family = quasibinomial())
summary(modelo0.bin)
## 
## Call:
## svyglm(formula = prevoms ~ pais, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.2185     0.0952    2.30    0.024 *
## paisUru       0.2484     0.1420    1.75    0.084 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo0.bin)
##                2.5 % 97.5 %
## (Intercept)  0.03195 0.4050
## paisUru     -0.02999 0.5268
exp(modelo0.bin$coefficients)
## (Intercept)     paisUru 
##       1.244       1.282


modelo1.bin <- svyglm(prevoms ~ sexoinv, disenio_urubra, family = quasibinomial())
summary(modelo1.bin)
## 
## Call:
## svyglm(formula = prevoms ~ sexoinv, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)    0.316      0.101    3.13   0.0025 **
## sexoinv2-F     0.087      0.127    0.68   0.4961   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo1.bin)
##               2.5 % 97.5 %
## (Intercept)  0.1180 0.5148
## sexoinv2-F  -0.1623 0.3362
exp(modelo1.bin$coefficients)
## (Intercept)  sexoinv2-F 
##       1.372       1.091

modelo2.bin <- svyglm(prevoms ~ socioecon4cat, disenio_urubra, family = quasibinomial())
summary(modelo2.bin)
## 
## Call:
## svyglm(formula = prevoms ~ socioecon4cat, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 -0.414      0.164   -2.53   0.0133 *  
## socioecon4cat2-medio-alto    0.636      0.229    2.78   0.0069 ** 
## socioecon4cat3-medio-bajo    0.969      0.190    5.11  2.2e-06 ***
## socioecon4cat4-bajo          1.466      0.233    6.29  1.7e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo2.bin)
##                             2.5 %   97.5 %
## (Intercept)               -0.7349 -0.09387
## socioecon4cat2-medio-alto  0.1870  1.08521
## socioecon4cat3-medio-bajo  0.5977  1.34079
## socioecon4cat4-bajo        1.0091  1.92283
exp(modelo2.bin$coefficients)
##               (Intercept) socioecon4cat2-medio-alto 
##                    0.6607                    1.8891 
## socioecon4cat3-medio-bajo       socioecon4cat4-bajo 
##                    2.6360                    4.3318

modelo3.bin <- svyglm(prevoms ~ socioecon3cat, disenio_urubra, family = quasibinomial())
summary(modelo3.bin)
## 
## Call:
## svyglm(formula = prevoms ~ socioecon3cat, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            -0.246      0.132   -1.86    0.067 .  
## socioecon3cat2-medio    0.683      0.151    4.51  2.2e-05 ***
## socioecon3cat3-bajo     1.298      0.198    6.56  5.2e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo3.bin)
##                        2.5 %  97.5 %
## (Intercept)          -0.5059 0.01318
## socioecon3cat2-medio  0.3862 0.97989
## socioecon3cat3-bajo   0.9100 1.68580
exp(modelo3.bin$coefficients)
##          (Intercept) socioecon3cat2-medio  socioecon3cat3-bajo 
##               0.7817               1.9799               3.6617

modelo4.bin <- svyglm(prevoms ~ escolmaerecat23cat, disenio_urubra, family = quasibinomial())
summary(modelo4.bin)
## 
## Call:
## svyglm(formula = prevoms ~ escolmaerecat23cat, disenio_urubra, 
##     family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)                             -0.214      0.131   -1.63  0.10722
## escolmaerecat23cat2-high school          0.550      0.155    3.54  0.00068
## escolmaerecat23cat3-elementary school    0.999      0.172    5.81  1.3e-07
##                                          
## (Intercept)                              
## escolmaerecat23cat2-high school       ***
## escolmaerecat23cat3-elementary school ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.003)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo4.bin)
##                                         2.5 %  97.5 %
## (Intercept)                           -0.4704 0.04332
## escolmaerecat23cat2-high school        0.2452 0.85457
## escolmaerecat23cat3-elementary school  0.6620 1.33616
exp(modelo4.bin$coefficients)
##                           (Intercept) 
##                                0.8077 
##       escolmaerecat23cat2-high school 
##                                1.7330 
## escolmaerecat23cat3-elementary school 
##                                2.7158

modelo5.bin <- svyglm(prevoms ~ escolmae13cat, disenio_urubra, family = quasibinomial())
summary(modelo5.bin)
## 
## Call:
## svyglm(formula = prevoms ~ escolmae13cat, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                        -0.471      0.139   -3.40   0.0011 ** 
## escolmae13cat2-high school          0.530      0.235    2.26   0.0267 *  
## escolmae13cat3-Elementary School    1.190      0.176    6.77  2.1e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.003)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo5.bin)
##                                     2.5 %  97.5 %
## (Intercept)                      -0.74290 -0.1998
## escolmae13cat2-high school        0.06988  0.9906
## escolmae13cat3-Elementary School  0.84540  1.5349
exp(modelo5.bin$coefficients)
##                      (Intercept)       escolmae13cat2-high school 
##                           0.6242                           1.6994 
## escolmae13cat3-Elementary School 
##                           3.2876


modelo6.bin <- svyglm(prevoms ~ freqescovacat, disenio_urubra, family = quasibinomial())
summary(modelo6.bin)
## 
## Call:
## svyglm(formula = prevoms ~ freqescovacat, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                       0.758      0.123    6.17  2.8e-08 ***
## freqescovacat2-veces al d\xeda   -0.402      0.126   -3.19  0.00203 ** 
## freqescovacat3-veces al d\xeda   -0.575      0.146   -3.95  0.00017 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo6.bin)
##                                  2.5 %  97.5 %
## (Intercept)                     0.5167  0.9984
## freqescovacat2-veces al d\xeda -0.6489 -0.1551
## freqescovacat3-veces al d\xeda -0.8599 -0.2892
exp(modelo6.bin$coefficients)
##                    (Intercept) freqescovacat2-veces al d\xeda 
##                          2.133                          0.669 
## freqescovacat3-veces al d\xeda 
##                          0.563

modelo7.bin <- svyglm(prevoms ~ usocreme, disenio_urubra, family = quasibinomial())
summary(modelo7.bin)
## 
## Call:
## svyglm(formula = prevoms ~ usocreme, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.347      0.076    4.57  1.8e-05 ***
## usocreme2-No    0.582      0.381    1.53     0.13    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.002)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo7.bin)
##                2.5 % 97.5 %
## (Intercept)   0.1980 0.4958
## usocreme2-No -0.1653 1.3289
exp(modelo7.bin$coefficients)
##  (Intercept) usocreme2-No 
##        1.415        1.789

modelo8.bin <- svyglm(prevoms ~ visidentcatonde, disenio_urubra, family = quasibinomial())
summary(modelo8.bin)
## 
## Call:
## svyglm(formula = prevoms ~ visidentcatonde, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                        Estimate Std. Error t value
## (Intercept)                              0.0447     0.0764    0.59
## visidentcatonde2-Publico                 0.8203     0.1138    7.21
## visidentcatonde3-Nunca fue al dentista   0.5164     0.1323    3.90
##                                        Pr(>|t|)    
## (Intercept)                              0.5601    
## visidentcatonde2-Publico                  3e-10 ***
## visidentcatonde3-Nunca fue al dentista   0.0002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9956)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo8.bin)
##                                          2.5 % 97.5 %
## (Intercept)                            -0.1050 0.1943
## visidentcatonde2-Publico                0.5973 1.0433
## visidentcatonde3-Nunca fue al dentista  0.2570 0.7757
exp(modelo8.bin$coefficients)
##                            (Intercept) 
##                                  1.046 
##               visidentcatonde2-Publico 
##                                  2.271 
## visidentcatonde3-Nunca fue al dentista 
##                                  1.676

modelo9.bin <- svyglm(prevoms ~ visiquando, disenio_urubra, family = quasibinomial())
summary(modelo9.bin)
## 
## Call:
## svyglm(formula = prevoms ~ visiquando, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                       0.30832    0.07775    3.97  0.00016 ***
## visiquando2- m\xe1s de 2 a\xf1os  0.00728    0.15435    0.05  0.96250    
## visiquando3- nunca fue            0.26977    0.12670    2.13  0.03636 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9982)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo9.bin)
##                                     2.5 % 97.5 %
## (Intercept)                       0.15593 0.4607
## visiquando2- m\xe1s de 2 a\xf1os -0.29525 0.3098
## visiquando3- nunca fue            0.02143 0.5181
exp(modelo9.bin$coefficients)
##                      (Intercept) visiquando2- m\xe1s de 2 a\xf1os 
##                            1.361                            1.007 
##           visiquando3- nunca fue 
##                            1.310

modelo10.bin <- svyglm(prevoms ~ fluorprof, disenio_urubra, family = quasibinomial())
summary(modelo10.bin)
## 
## Call:
## svyglm(formula = prevoms ~ fluorprof, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)     0.3020     0.0889    3.40   0.0011 **
## fluorprof2-No   0.1015     0.1242    0.82   0.4165   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9991)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo10.bin)
##                 2.5 % 97.5 %
## (Intercept)    0.1277 0.4763
## fluorprof2-No -0.1420 0.3449
exp(modelo10.bin$coefficients)
##   (Intercept) fluorprof2-No 
##         1.353         1.107

modelo11.bin <- svyglm(prevoms ~ isg20 + pais, disenio_urubra, family = quasibinomial())
summary(modelo11.bin)
## 
## Call:
## svyglm(formula = prevoms ~ isg20 + pais, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.0299     0.1780   -0.17   0.8670    
## isg202- 20 a 60   0.0505     0.1689    0.30   0.7659    
## isg203- >=60      0.7062     0.1643    4.30  4.9e-05 ***
## paisUru           0.4274     0.1382    3.09   0.0028 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo11.bin)
##                   2.5 % 97.5 %
## (Intercept)     -0.3789 0.3190
## isg202- 20 a 60 -0.2806 0.3816
## isg203- >=60     0.3843 1.0282
## paisUru          0.1564 0.6983
exp(modelo11.bin$coefficients)
##     (Intercept) isg202- 20 a 60    isg203- >=60         paisUru 
##          0.9705          1.0518          2.0263          1.5332

modelo12.bin <- svyglm(prevoms ~ isg45, disenio_urubra, family = quasibinomial())
summary(modelo12.bin)
## 
## Call:
## svyglm(formula = prevoms ~ isg45, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.2430     0.0959    2.53    0.013 *  
## isg452- 45 a 60   0.1196     0.1293    0.93    0.358    
## isg453- >=60      0.5275     0.1246    4.23  6.2e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo12.bin)
##                    2.5 % 97.5 %
## (Intercept)      0.05503 0.4309
## isg452- 45 a 60 -0.13379 0.3730
## isg453- >=60     0.28321 0.7717
exp(modelo12.bin$coefficients)
##     (Intercept) isg452- 45 a 60    isg453- >=60 
##           1.275           1.127           1.695


modelo13.bin <- svyglm(prevoms ~ tipoesc, disenio_urubra, family = quasibinomial())
summary(modelo13.bin)
## 
## Call:
## svyglm(formula = prevoms ~ tipoesc, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        -0.181      0.125   -1.45     0.15    
## tipoesc2-Publica    0.725      0.137    5.30  9.9e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo13.bin)
##                    2.5 %  97.5 %
## (Intercept)      -0.4265 0.06432
## tipoesc2-Publica  0.4568 0.99231
exp(modelo13.bin$coefficients)
##      (Intercept) tipoesc2-Publica 
##           0.8344           2.0638
#
# load('~/Dropbox/odontologia/maestria_anunziatta/BancoUnidoBrasUru/BRASURU(11102013).RData')
# 
# modelo1multi.bin<-svyglm(prevoms~pais+tipoesc+socioecon4cat+escolmae13cat+freqescovacat+visidentcatonde+visiquando+isg45,disenio_urubra,family=quasibinomial())
# summary(modelo1multi.bin) confint(modelo1multi.bin)
# exp(modelo1multi.bin$coefficients)