# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(scales)
library(ggrepel)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("WMT", "MSFT", "GE")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
symbols
## [1] "WMT" "MSFT" "GE"
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "GE" "MSFT" "WMT"
#Weights
weights <- c(0.25, 0.25, 0.5)
weights
## [1] 0.25 0.25 0.50
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 GE 0.25
## 2 MSFT 0.25
## 3 WMT 0.5
# tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months" )
portfolio_returns_tbl
## # A tibble: 60 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 0.0342
## 2 2013-02-28 0.0235
## 3 2013-03-28 0.0371
## 4 2013-04-30 0.0463
## 5 2013-05-31 0.0104
## 6 2013-06-28 -0.00434
## 7 2013-07-31 0.0147
## 8 2013-08-30 -0.0291
## 9 2013-09-30 0.0157
## 10 2013-10-31 0.0565
## # … with 50 more rows
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.0313 0.0313
# Mean of Portfolio Returns
portfolio_mean_tidyquant_builtin_percent <- mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] 0.009488039
# Expected Returns VS Risk
Sd_Mean_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Stdev, Mean = ArithmeticMean) %>%
ungroup() %>%
# Add Portfolio Standard Deviation
add_row(tibble(asset = "portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
Sd_Mean_tbl
## # A tibble: 4 × 3
## asset Stdev Mean
## <chr> <dbl> <dbl>
## 1 GE 0.0544 -0.0003
## 2 MSFT 0.0589 0.0216
## 3 WMT 0.0471 0.0083
## 4 portfolio 0.0313 0.00949
Sd_Mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset))
rolling_sd_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = portfolio.returns,
mutate_fun = rollapply,
width = 24,
FUN = sd,
col_rename = "rolling_sd") %>%
na.omit() %>%
select(date, rolling_sd)
rolling_sd_tbl
## # A tibble: 37 × 2
## date rolling_sd
## <date> <dbl>
## 1 2014-12-31 0.0304
## 2 2015-01-30 0.0331
## 3 2015-02-27 0.0336
## 4 2015-03-31 0.0346
## 5 2015-04-30 0.0343
## 6 2015-05-29 0.0351
## 7 2015-06-30 0.0364
## 8 2015-07-31 0.0365
## 9 2015-08-31 0.0397
## 10 2015-09-30 0.0397
## # … with 27 more rows
rolling_sd_tbl %>%
ggplot(aes(x = date, y = rolling_sd)) +
geom_line(color = "orange") +
# Formating
scale_y_continuous(labels = scales::percent_format()) +
labs(x = NULL, y = NULL, title = "24 Month Rolling Volitility") +
theme(plot.title = element_text(hjust = .5))
How should you expect your portfolio to perform relative to its assets in the portfolio? Would you invest all your money in any of the individual stocks instead of the portfolio? Discuss both in terms of expected return and risk.
I would expect the portfolio to have a less volatile return than any of the individual stocks within it. This is indicated by the lower standard deviation of the portfolio, meaning the return range is going to be much smaller. At the same time the average return is competitive or better than two of the three stocks within the portfolio. I would not likely invest my money in one individual stock over the portfolio. Even the stock that returns the most within my portfolio has a high standard deviation, and therefore has more variance than the other companies. The portfolio has the benefit to have dropped in rolling volitility within the years that are being measured.