The expected time for the first of these bulbs is 10 hours. Exercise 10 tells us that M be the minimum value of the density for the the minimum value of Xi is exponential with mean µ/n.
The lifetime expectancy of any bulb i \[E[X_i]=\frac{1}{\lambda_i}=1000, \lambda_i=\frac{1}{1000}\] As we are given 100 bulbs, n=100 \[\lambda=n\lambda_i=100*\frac{1}{1000}=\frac{1}{10}\] The the density for the the minimum value of Xi \[E[X_imin]=\frac{1}{\lambda}=\frac{1}{\frac{1}{10}}=10\]
As we are given that each independent random variable has an exponential density then \[f(X_1)=\lambda*e^{-\lambda*x_1}\], \[f(X_2)=\lambda*e^{-\lambda*x_2}\] Using the densities \[f_z(Z)=\int_{-\infty}^{+\infty} f_{X2}(x_1-Z)f_{X1}(x_1)dx_1=\int_{0}^{\infty} \lambda*e^{-\lambda*x_1} \lambda*e^{-\lambda*(x_1-z)}dx_1=\int_{0}^{\infty}\lambda^2*e^{-2\lambda*x_1}e^{\lambda*z}dx_1=\int_{0}^{\infty}\lambda^2*e^{\lambda(z-2*x_1)}dx_1=(1/2)λe^{−λ|z|}\]
Chebyshev’s Inequality \[P(|X-\mu|\ge k\sigma)\le \frac{1}{k^2}\]
An upper bound is 1. \[\sigma^2=\frac{100}{3}=>\sigma=\frac{10}{\sqrt3}\] From the problem a \[k\sigma=2=>k=\frac{2}{\sigma}=\frac{2*\sqrt3}{10}\] From the Chebyshev’s Inequality \[\frac{1}{k^2}=\frac{100}{12}=8.333\] We can not accept that \[P(|X-\mu|\ge k\sigma)\le 8.333\] Since the highest value of probability is 1, the upper bound will be 1. \[P(|X-\mu|\ge 2)\le 1\]
An upper bound is 1.
\[k\sigma=5=>k=\frac{5}{\sigma}=\frac{5*\sqrt3}{10}=\frac{\sqrt3}{2}\] From the Chebyshev’s Inequality \[\frac{1}{k^2}=\frac{4}{3}=1.333\] We can not accept that \[P(|X-\mu|\ge k\sigma)\le 1.333\] Since the highest value of probability is 1, the upper bound will be 1. \[P(|X-\mu|\ge 5)\le 1\]
An upper bound is 100/243. \[k\sigma=9=>k=\frac{9}{\sigma}=\frac{9*\sqrt3}{10}\] From the Chebyshev’s Inequality \[\frac{1}{k^2}=\frac{100}{243}\] The 1/k^2 is less than one \[P(|X-\mu|\ge 9)\le \frac{100}{243}\]
An upper bound is 1/12. \[k\sigma=20=>k=\frac{20}{\sigma}=\frac{20*\sqrt3}{10}=2\sqrt3\] From the Chebyshev’s Inequality \[\frac{1}{k^2}=\frac{1}{12}\] The 1/k^2 is less than one \[P(|X-\mu|\ge 20)\le \frac{1}{12}\]