LIBRERIAS
library(rio)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
library(dplyr)
library(ggplot2)
library(data.table)
##
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
## between, first, last
library(devtools)
## Loading required package: usethis
library(foreign)
library(corrplot)
## corrplot 0.92 loaded
library(DescTools)
##
## Attaching package: 'DescTools'
## The following object is masked from 'package:data.table':
##
## %like%
## The following object is masked from 'package:car':
##
## Recode
library(lm.beta)
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
library(ggfortify)
library(see)
library(patchwork)
library(performance)
library(tidyverse)
## ── Attaching packages
## ───────────────────────────────────────
## tidyverse 1.3.2 ──
## ✔ tibble 3.1.8 ✔ purrr 0.3.4
## ✔ tidyr 1.2.0 ✔ stringr 1.4.0
## ✔ readr 2.1.2 ✔ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ data.table::between() masks dplyr::between()
## ✖ dplyr::filter() masks stats::filter()
## ✖ data.table::first() masks dplyr::first()
## ✖ dplyr::lag() masks stats::lag()
## ✖ data.table::last() masks dplyr::last()
## ✖ car::recode() masks dplyr::recode()
## ✖ purrr::some() masks car::some()
## ✖ purrr::transpose() masks data.table::transpose()
library(see)
library(patchwork)
library(performance)
LOGÍSTICO LINEAL BINARIO
PARA CONVERTIR UNA VARIABLE A DUMMY VD: RETORNO A CLASES data\(retorno=as.factor(data\)P2_2) levels(data\(retorno) = c("no", "si") table(data\)retorno) VD: Retorno VI: El docente vive con personas de la tercera edad Se convierte dummy: data\(P1_4=recode(data\)P1_4,“1=1;2=0”) data\(P1_4=as.numeric(data\)P1_4) table(data$P1_4) AHORA SE GENERA EL MODELO: modelo1 = glm(retorno ~ P1_4, family = binomial(link=“logit”) ,data = data) summary(modelo1)
LOGISTICO ORDINAL NIVEL DE SALARIO: PRETENDE UN ORDEN RECODIFICACIÓN DE LA DEPENDIENTE: NIVEL DE SALARIO
data\(salario_actual_ordinal = cut(data\)salario_actual, breaks = c(0, 24000,28875, 36938,135000), include.lowest = T, ordered_result = T, labels = c(“Muy Bajo”, “Bajo”, “Alto”, “Muy Alto”))
table(data$salario_actual_ordinal) Realizamos el modelo library(MASS) modelo <- polr(salario_actual_ordinal ~ sexo_Mujer + educ, data = data, Hess=T) summary(modelo) MODELO LOGÍSTICO MULTINOMIAL library(rattle.data) data(wine) require(nnet) MODELO: multinom.fit <- multinom(Type ~ Alcohol + Color -1, data = train)