library(mosaicCalc)
## Loading required package: mosaic
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
## Loading required package: mosaicCore
##
## Attaching package: 'mosaicCore'
## The following objects are masked from 'package:dplyr':
##
## count, tally
##
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
##
## D
g <- makeFun(sin(x^2)*cos(sqrt(x^2 + 5 )-x^4) - x + 1 ~ x)
slice_plot(g(x) ~ x, domain(x = -3:3)) %>%
gf_hline(yintercept = 2, color = "blue")
g <- makeFun(sin(x^4)*cos(sqrt(x^2 + 7 )-x^2) - x + 4 ~ x)
slice_plot(g(x) ~ x, domain(x = -3:3)) %>%
gf_area(yintercept =4, color = "green")
penjelasan:
pada penjelasan dibawah fungsi “gf_area(yintercept =4, color =”green”)” menunjukkan area yang di arsir pada operasi matematika. memberikan efek bahwa yang diarsir atau wilayah yang dihitung adalh sekian dari garis line nya.
g <- makeFun(sin(x^2)*cos(sqrt(x^2 + 5 )-x^4) - x + 1 ~ x)
slice_plot(g(x) ~ x, domain(x = -3:3)) %>%
gf_hline(yintercept = 1.7, color = "blue") %>%
gf_vline(xintercept =0.5, color = "green")
library(mosaicCalc)
findZeros(g(x) ~ x, xlim = range(-1000, 1000))
## x
## 1 0.7588
## 2 0.9376
## 3 1.3934
findZeros( sin(x) - 0.35 ~ x, xlim=range(-20,20) )
## x
## 1 -12.2088
## 2 -9.7823
## 3 -5.9256
## 4 -3.4991
## 5 0.3576
## 6 2.7840
## 7 6.6407
## 8 9.0672
## 9 12.9239
## 10 15.3504
g <- makeFun(4 + exp(k*t) - 4^(b*t) ~ b, k=0.00035, t=1.5)
findZeros( 3*x^2 + 7*x - 10 ~ x, xlim=range(-100,100))
## x
## 1 -3.3334
## 2 1.0000
slice_plot(g(x) ~ x, domain(x = -3:3)) %>%
gf_hline(yintercept = 6, color = "blue")
g <- makeFun(4 + exp(k*t) - 2^(b*t) ~ b, k=0.00035, t=1)
findZeros(1*x^5 - 3*x^2 - 3*x - 5 ~ x, xlim=c(-5,10))
## x
## 1 1.8303
slice_plot(g(x) ~ x, domain(x = -3:3)) %>%
gf_hline(yintercept = 2, color = "green")%>%
gf_area(xintercept =4, color = "green")
g <- makeFun(4 + exp(k*t) - 2^(b*t) ~ b, k=0.00035, t=1)
findZeros(1*x^5 - 3*x^2 - 3*x - 5 ~ x, xlim=c(-5,10))
## x
## 1 1.8303
slice_plot(g(x) ~ x, domain(x = -3:3)) %>%
gf_area(yintercept = 2, color = "grey")%>%
gf_vline(xintercept =4, color = "green")
g <- makeFun(sin(x^2)*cos(sqrt(x^4 + 3 )-x^2) - x + 1 ~ x)
findZeros( 7*x^4 -2*x^3 - 4*x^2 - 3*x - 10 ~ x, xlim=c(-10,10))
## x
## 1 -1.0628
## 2 1.4123
g <- makeFun(sin(x^2)*cos(sqrt(x^4 + 3 )-x^2) - x + 1 ~ x)
findZeros( 7*x^4 -2*x^3 - 4*x^2 - 3*x - 10 ~ x, xlim=c(-10,10))
## x
## 1 -1.0628
## 2 1.4123
slice_plot(g(x) ~ x, domain(x = -3:3)) %>%
gf_hline(yintercept = 0, color = "red")%>%
gf_vline(xintercept = 0, color = "yellow")
g <- makeFun(sin(x^2)*cos(sqrt(x^3 + 4 )-x^3) - x + 2 ~ x)
findZeros( 6*x^5-7*x^4 -2*x^3 - 4*x^2 - 3*x - 10 ~ x, xlim=c(-10,10))
## x
## 1 1.8012
slice_plot(g(x) ~ x, domain(x = -3:3)) %>%
gf_hline(yintercept = 0, color = "red")%>%
gf_vline(xintercept = 0, color = "yellow")
## Warning in sqrt(x^3 + 4): NaNs produced
## Warning in sqrt(x^3 + 4): NaNs produced
## Warning: Removed 24 row(s) containing missing values (geom_path).
g <- makeFun(sin(x^3)*cos(sqrt(x^2 + 1 )-x^2) - x + 1.6 ~ x)
findZeros( 3*x^5-2*x^4 -2*x^3 - 3*x^2 - 3*x - 7 ~ x, xlim=c(-10,10))
## x
## 1 1.7744
slice_plot(g(x) ~ x, domain(x = -3:3)) %>%
gf_hline(yintercept = 2, color = "green")%>%
gf_vline(xintercept = -1.5, color = "blue")
di garis pada titik ini(gf_vline(xintercept = -1.5, color = “blue”)) diberikan titik yang berada pada mines pada garis x nya
g <- makeFun(2 + exp(k*t) - 3^(b*t) ~ b, k=0.00100, t=4)
findZeros(2*x^6 - 7*x^2 - 3*x - 4 ~ x, xlim=c(-10,10))
## x
## 1 -1.3652
## 2 1.5209
slice_plot(g(x) ~ x, domain(x = -3:3)) %>%
gf_hline(yintercept = 2, color = "green")%>%
gf_vline(xintercept = 3, color = "blue")
g <- makeFun(4 + exp(k*t) - 2^(b*t) ~ b, k=0.00035, t=1)
findZeros( 3*exp(-t/5)*sin(pi*t) ~ t, xlim=range(1,10))
## t
## 1 0
## 2 1
## 3 2
## 4 3
## 5 4
## 6 5
## 7 6
## 8 7
## 9 8
## 10 9
slice_plot(g(x) ~ x, domain(x = -3:3)) %>%
gf_hline(yintercept = 2, color = "blue")%>%
gf_vline(xintercept = 0, color = "orange")
g <- makeFun(4 + exp(k*t) - 2^(b*t) ~ b, k=0.00035, t=1)
findZeros( 3*exp(-t/5)*sin(pi*t) ~ t, xlim=range(1,10))
## t
## 1 0
## 2 1
## 3 2
## 4 3
## 5 4
## 6 5
## 7 6
## 8 7
## 9 8
## 10 9
slice_plot(g(x) ~ x, domain(x = -3:3)) %>%
gf_hline(yintercept = 2, color = "blue")%>%
gf_area(xintercept = 0, color = "orange")
g <- makeFun(4 + exp(k*t) - 3^(b*t) ~ b, k=0.0100, t=0.2)
findZeros( 3*exp(-t/5)*sin(pi*t) ~ t, xlim=range(1,10))
## t
## 1 0
## 2 1
## 3 2
## 4 3
## 5 4
## 6 5
## 7 6
## 8 7
## 9 8
## 10 9
findZeros( sin(x) - 0.90 ~ x, xlim=range(-20,20) )
## x
## 1 -11.4466
## 2 -10.5445
## 3 -5.1630
## 4 -4.2614
## 5 1.1198
## 6 2.0218
## 7 7.4030
## 8 8.3050
## 9 13.6861
## 10 14.5882
slice_plot(g(x) ~ x, domain(x = -3:3)) %>%
gf_hline(yintercept = 1.3, color = "blue")%>%
gf_vline(xintercept = 3, color = "orange")