NIM : 220605110107

Universitas : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Jurusan : Teknik Informatika

“Smoothers” dan “splines” adalah dua jenis fungsi tujuan umum yang dapat menangkap pola dalam data, tetapi tidak ada bentuk aljabar sederhana. Membuat fungsi seperti itu sangat mudah, selama Anda dapat membebaskan diri dari gagasan bahwa fungsi harus selalu memiliki rumus.

Smoother dan splines tidak ditentukan oleh bentuk dan parameter aljabar, tetapi oleh data dan algoggiritma. Sebagai ilustrasi, pertimbangkan beberapa data sederhana. Kumpulan data Loblolly berisi 84 pengukuran usia dan tinggi pinus loblolly.

library(mosaic)
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following object is masked from 'package:ggplot2':
## 
##     stat
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
gf_point(height ~ age, data=datasets::Loblolly)

gf_point(Seed ~ age, data=datasets::Loblolly)

Mungkin menarik untuk berspekulasi tentang fungsi aljabar macam apa yang diikuti oleh pertumbuhan pinus loblolly, tetapi fungsi semacam itu hanyalah sebuah model. Untuk banyak tujuan, mengukur bagaimana laju pertumbuhan berubah seiring bertambahnya usia pohon, yang dibutuhkan hanyalah fungsi mulus yang terlihat seperti data. Mari kita pertimbangkan dua:

Sebuah “spline kubik”, yang mengikuti kelompok titik data dan kurva dengan mulus dan anggun.

f1 <- spliner(height ~ age, data = datasets::Loblolly)
## Warning in regularize.values(x, y, ties, missing(ties)): collapsing to unique
## 'x' values

Sebuah “interpolant linier”, yang menghubungkan kelompok titik data dengan garis lurus.

f2 <- connector(height ~ age, data = datasets::Loblolly)
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## collapsing to unique 'x' values

Definisi fungsi-fungsi ini mungkin tampak aneh pada awalnya — mereka sepenuhnya ditentukan oleh data: tidak ada parameter! Meskipun demikian, mereka adalah fungsi asli dan dapat bekerja dengan seperti fungsi lainnya. Misalnya, Anda dapat memasukkan input dan mendapatkan output:

f1(age = 8)
## [1] 20.68193
f2(age = 8)
## [1] 20.54729

Anda bahkan dapat menemukan usia di mana ketinggian akan menjadi 35 kaki:

findZeros(f1(age) - 35 ~ age, xlim=range(0,30))
##       age
## 1 12.6905
findZeros(f2(age) - 35 ~ age, xlim=range(0,30))
##    age
## 1 12.9

Spline dan konektor tidak selalu sesuai dengan yang Anda inginkan, terutama bila data tidak dibagi menjadi kelompok-kelompok terpisah, seperti data pinus loblolly. Misalnya, trees.csvkumpulan data adalah pengukuran volume, ketebalan, dan tinggi pohon ceri hitam. Pohon-pohon ditebang untuk diambil kayunya, dan minat dalam melakukan pengukuran adalah untuk membantu memperkirakan berapa banyak volume kayu yang dapat digunakan yang dapat diperoleh dari sebuah pohon, berdasarkan lingkar (yaitu, keliling) dan tinggi. Ini akan berguna, misalnya, dalam memperkirakan berapa nilai uang sebuah pohon. Namun, tidak seperti data pinus loblolly, data ceri hitam tidak melibatkan pohon yang jatuh dengan baik ke dalam kelompok yang ditentukan.

Cherry <- datasets::trees
gf_point(Volume ~ Girth, data = Cherry)

Cherry <- datasets::trees gf_point(Volume ~ Girth, data = Cherry)

library(mosaicCalc)
## Loading required package: mosaicCore
## 
## Attaching package: 'mosaicCore'
## The following objects are masked from 'package:dplyr':
## 
##     count, tally
## 
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
## 
##     D
g1 = spliner(Volume ~ Girth, data = Cherry)
## Warning in regularize.values(x, y, ties, missing(ties)): collapsing to unique
## 'x' values
g2 = connector(Volume ~ Girth, data = Cherry)
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## collapsing to unique 'x' values
slice_plot(g1(x) ~ x, domain(x = 8:18)) %>%
  slice_plot(g2(x) ~ x, color ="red") %>%
  gf_point(Volume ~ Girth, data = Cherry) %>%
  gf_labs(x = "Girth (inches)")

Gerakan naik turun adalah fungsi yang sulit dipercaya. Untuk situasi seperti itu, di mana Anda memiliki alasan untuk percaya bahwa fungsi mulus lebih tepat daripada fungsi dengan banyak pasang surut, jenis fungsi yang berbeda sesuai: lebih halus.

g3 <- smoother(Volume ~ Girth, data = Cherry, span=1.5)
gf_point(Volume~Girth, data=Cherry) %>%
  slice_plot(g3(Girth) ~ Girth) %>%
  gf_labs(x = "Girth (inches)")

Smoother diberi nama yang baik: mereka membangun fungsi smooth yang mendekati data. Anda memiliki kendali atas seberapa mulus fungsi tersebut. Parameter hiperspan mengatur ini

g4 <- smoother(Volume ~ Girth, data=Cherry, span=1.0)
gf_point(Volume~Girth, data = Cherry) %>%
  slice_plot(g4(Girth) ~ Girth) %>%
  gf_labs(x = "Girth (inches)", y = "Wood volume")

Tentu saja, seringkali Anda ingin menangkap hubungan di mana ada lebih dari satu variabel sebagai input. Smoother melakukan ini dengan sangat baik; cukup tentukan variabel mana yang akan menjadi input.

g5 <- smoother(Volume ~ Girth+Height, 
               data = Cherry, span = 1.0)
gf_point(Height ~ Girth, data = Cherry) %>%
  contour_plot(g5(Girth, Height) ~ Girth + Height) %>%
  gf_labs(x = "Girth (inches)", 
          y = "Height (ft)", 
          title = "Volume (ft^3)")