M586PE2

Ayrton Pablo Almada Jimenez

2022-10-12

DC Approximation (lossless approximation) Part I

DC ApproximationPart II

OPF: Optimal Power Flow + PTDF: Power Transfer Distribution Factors Part I

\[ \begin{aligned} \min&\Biggr\{\sum_{g}c_g P_g\Biggr\}\\ \text{s.t}\\ \forall{i}&:~\Pi_i=\sum_{i\sim j}b_{ij}(\theta_{i}-\theta_{j})\\ \forall{i\sim j}&:-P^{max}_{ij}\le b_{ij}(\theta_{i}-\theta_{j})\le P^{max}_{ij}\text{ thermal limit}\\(\forall{i\sim j}&:-\theta_{\text{Max}}\le \theta_i-\theta_j\le \theta_{\text{Max}}), \end{aligned} \]

OPF + PTDF Part II

OPF + PTDF Part III

OPF + PTDF Part IV

\[ I=B\Theta=(A\text{diag}\{b_k\}A^*)\Theta \]

OPF + PTDF Part V

\(F=\begin{bmatrix}f_1\\f_2\\\vdots\\f_k\end{bmatrix}=\begin{bmatrix}b_{1}&0&\cdots&0\\0&b_{2}&\cdots&0\\0&0&\ddots&\vdots\\0&0&\cdots&b_{n_{lines}}\end{bmatrix}A^*\begin{bmatrix}\theta_1\\\theta_2\\\vdots\\\theta_n\end{bmatrix}=\{b_k\}A^*\Theta\)

OPF + PTDF Part VI

OPF + PTDF Part VII

\[ \begin{aligned} \forall{k\text{ line }}&:-f^{max}_{k}\le \sum_{i}^{n_{lines}}\Phi_{ki}\Pi_i\le f^{max}_{k}\\ \forall{k\text{ line }}&:-f^{max}_{k}\le \sum_{i}^{n_{lines}}\Phi_{ki}\left(\sum_{g\in G_i}P_g-L_i\right)\le f^{max}_{k}\\ \forall{k\text{ line }}&:-f^{max}_{k}\le \sum_{i}^{n_{lines}}\Phi_{ki}\sum_{g\in G_i}P_g- \sum_{i}^{n_{lines}}\Phi_{ki}L_i\le f^{max}_{k}\\ \forall{k\text{ line }}&:-f^{max}_{k}+\sum_{i}^{n_{lines}}\Phi_{ki}L_i\le \sum_{i}^{n_{lines}}\Phi_{ki}\sum_{g\in G_i}P_g\le f^{max}_{k}+\sum_{i}^{n_{lines}}\Phi_{ki}L_i \end{aligned} \]

OPF + PTDF Part VIII

\[ \begin{aligned} \min&\Biggr\{\sum_{g}c_g P_g\Biggr\}\\ \text{s.t}\\ \forall{g\text{ generator }}&:P_{g}^{min}\le P_g \le P_{g}^{max}\\ \forall{k\text{ line }}&:-f^{max}_{k}+\sum_{i}^{n_{lines}}\Phi_{ki}L_i\le \sum_{i}^{n_{lines}}\Phi_{ki}\sum_{g\in G_i}P_g\le f^{max}_{k}+\sum_{i}^{n_{lines}}\Phi_{ki}L_i~~~~\text{thermal limit.} \end{aligned} \]

Example