Introduction
Questions
Variation
Visualizing distributions
diamonds %>%
ggplot(aes(x = cut)) +
geom_bar()

diamonds %>%
ggplot(mapping = aes(x = carat)) +
geom_histogram(binwidth = 0.5)

diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.5)

diamonds %>%
ggplot(aes(x = carat, color = cut)) +
geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Typical values
diamonds %>%
# Filter out diamonds > 3 carat
filter(carat < 3) %>%
# Plot
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.01)

faithful %>%
ggplot(aes(eruptions)) +
geom_histogram(binwidth = 0.25)

Unusual values
diamonds %>%
ggplot(aes(y)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

diamonds %>%
ggplot(aes(y)) +
geom_histogram() +
coord_cartesian(ylim = c(0,50))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Misiing values
diamonds %>%
# filter(y < 3 | y > 20) %>%
mutate(y = ifelse(y < 3 | y > 20, NA, y))
## # A tibble: 53,940 × 10
## carat cut color clarity depth table price x y z
## <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
## 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
## 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
## 4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
## 5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
## 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
## 7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
## 8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
## 9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
## 10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
## # … with 53,930 more rows
# Plot
ggplot(data = diamonds, mapping = aes(x = x, y = y)) +
geom_point()

Covariation
A categorical and continuous variable
diamonds %>%
ggplot(aes(x = cut, y = price)) +
geom_boxplot()

Two categorical variables
diamonds %>%
count(color, cut) %>%
ggplot(aes(x = color, y = cut, fill = n)) +
geom_tile()

Two continuous variables
library(hexbin)
diamonds %>%
ggplot(aes(x = carat, y = price)) +
geom_hex()

diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat, y = price)) +
geom_boxplot(aes(group = cut_width(carat, 0.1)))

Patterns and models
library(modelr)
mod <- lm(log(price) ~ log(carat), data = diamonds)
diamonds4 <- diamonds %>%
modelr::add_residuals(mod) %>%
mutate(resid = exp(resid))
diamonds4 %>%
ggplot(aes(carat, resid)) +
geom_point()

diamonds4 %>%
ggplot(aes(cut, resid)) +
geom_boxplot()
