# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
from 2012-12-31 to 2017-12-31
symbols <- c("LULU", "NFLX", "TSLA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tb1 <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tb1 %>% distinct(asset) %>% pull()
symbols
## [1] "LULU" "NFLX" "TSLA"
#weights
weights <- c(0.30, 0.35, 0.35)
weights
## [1] 0.30 0.35 0.35
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 LULU 0.3
## 2 NFLX 0.35
## 3 TSLA 0.35
portfolio_returns_tb1 <- asset_returns_tb1 %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months")
portfolio_returns_tb1
## # A tibble: 20 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 0.229
## 2 2013-06-28 0.417
## 3 2013-09-30 0.373
## 4 2013-12-31 -0.0911
## 5 2014-03-31 0.0638
## 6 2014-06-30 0.0494
## 7 2014-09-30 0.0232
## 8 2014-12-31 -0.0428
## 9 2015-03-31 0.0534
## 10 2015-06-30 0.288
## 11 2015-09-30 -0.0697
## 12 2015-12-31 0.0344
## 13 2016-03-31 0.0219
## 14 2016-06-30 -0.0405
## 15 2016-09-30 -0.0453
## 16 2016-12-30 0.115
## 17 2017-03-31 0.0869
## 18 2017-06-30 0.137
## 19 2017-09-29 0.0601
## 20 2017-12-29 0.0579
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tb1 %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 3))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.141 0.141
# mean of portfolio returns
portfolio_mean_tidyquant_builtin_percent <- mean(portfolio_returns_tb1$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] 0.08609191
#Expected Returns vs Risk
sd_mean_tbl <- asset_returns_tb1 %>%
group_by(asset)%>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
mutate(Stdev = Stdev * 100,
Mean = Mean * 100) %>%
#add portfolio sd
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent * 100 ,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
sd_mean_tbl
## # A tibble: 4 × 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 LULU 0.15 17.6
## 2 NFLX 13.4 21.7
## 3 TSLA 11.1 30.0
## 4 Portfolio 8.61 0.141
sd_mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point() +
ggrepel::geom_label_repel(aes(label = asset))
rolling_sd_tbl <- portfolio_returns_tb1 %>%
tq_mutate(select = portfolio.returns,
mutate_fun = rollapply,
width = 20,
FUN = sd,
col_rename = "rolling_sd") %>%
na.omit() %>%
select(date, rolling_sd)
rolling_sd_tbl %>%
ggplot(aes(x= date, y = rolling_sd)) +
geom_line(color = "cornflowerblue")
# Formatting
scale_y_continuous(labels = scales::percent_format())
## <ScaleContinuousPosition>
## Range:
## Limits: 0 -- 1
#labeling
labs(x = NULL,
y = NULL,
title = "24-Month Rolling Volatillity") +
theme(plot.title = element_text(hjust = 0.5))
## NULL