library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.2.1 ✔ stringr 1.4.1
## ✔ readr 2.1.2 ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(dplyr)
library(RColorBrewer)
library(ggplot2)
Read in dataset
setwd("/Users/KathyOchoa/Documents/DATA 110/CSV Files")
nationsData <- read_csv("nations.csv")
## Rows: 5275 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (5): iso2c, iso3c, country, region, income
## dbl (5): year, gdp_percap, population, birth_rate, neonat_mortal_rate
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Create a new variable, GDP of each country, using mutate
oneTrillion = 1*(10^12)
nationsData <- nationsData %>%
mutate(gdp = (gdp_percap * population) / oneTrillion)
First Chart
chart1data <- nationsData %>%
group_by(country) %>%
filter(country == 'United Arab Emirates' | country == 'Singapore' | country == 'Switzerland' | country == 'Hong Kong SAR, China')
chart1 <- ggplot(chart1data, aes(x=year, y = gdp, fill = country, color = country)) +
labs(title = "GDP in Countries with the Highest % of Expats", caption = "Source: Expatrace.com") +
geom_line() +
xlab("Year") +
ylab("GDP ($ trillion)") +
geom_point() +
scale_color_brewer(palette = "Set1") +
theme_minimal(base_size = 14)
chart1

Second Chart
chart2data <- nationsData %>%
group_by(region, year) %>%
summarise(GDP = sum(gdp, na.rm = TRUE))
## `summarise()` has grouped output by 'region'. You can override using the
## `.groups` argument.
chart2 <- ggplot(chart2data, aes(x=year, y = GDP, fill = region)) +
geom_line() +
geom_area(color = "white") +
xlab("Year") +
ylab("GDP ($ trillion)") +
scale_fill_brewer(palette = "Set2") +
labs(title = "GDP by World Bank Region") +
theme_minimal(base_size = 12)
chart2
