library(tidytransit)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
## ✔ tibble 3.1.8 ✔ dplyr 1.0.9
## ✔ tidyr 1.2.0 ✔ stringr 1.4.1
## ✔ readr 2.1.2 ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(tmap)
library(ggplot2)
library(here)
## here() starts at C:/Users/CP8883/CP8883
library(units)
## udunits database from C:/Users/Mary Jane Leach/AppData/Local/R/win-library/4.2/units/share/udunits/udunits2.xml
library(sf)
## Linking to GEOS 3.9.1, GDAL 3.4.3, PROJ 7.2.1; sf_use_s2() is TRUE
library(leaflet)
library(tidycensus)
library(plotly)
##
## Attaching package: 'plotly'
##
## The following object is masked from 'package:ggplot2':
##
## last_plot
##
## The following object is masked from 'package:stats':
##
## filter
##
## The following object is masked from 'package:graphics':
##
## layout
library(tidygraph)
##
## Attaching package: 'tidygraph'
##
## The following object is masked from 'package:stats':
##
## filter
library(leafsync)
library(here)
library(ggdark)
library(ggpubr)
coffee <- read.csv("C:/Users/CP8883/CP8883/Mini4/coffee.csv")
head(coffee)
## X GEOID county hhincome pct_pov review_count avg_rating
## 1 1 13063040202 Clayton County 33276 0.20134228 57.00000 2
## 2 2 13063040308 Clayton County 28422 0.21071800 13.00000 3
## 3 3 13063040407 Clayton County 49271 0.10825507 29.33333 2
## 4 4 13063040408 Clayton County 44551 0.18095661 20.00000 4
## 5 5 13063040410 Clayton County 49719 0.11468019 41.00000 1
## 6 6 13063040411 Clayton County 57924 0.09068942 18.00000 2
## race.tot avg_price pct_white hhincome_log review_count_log pct_pov_log
## 1 2850 1 0.07508772 10.41289 4.060443 -1.554276
## 2 4262 1 0.26067574 10.25527 1.975622 -1.510869
## 3 4046 1 0.20514088 10.80529 3.320837 -2.134911
## 4 8489 1 0.16868889 10.70461 3.044522 -1.655709
## 5 7166 1 0.19369244 10.81434 3.737670 -2.082003
## 6 13311 1 0.16512659 10.96706 2.944439 -2.295715
## yelp_n
## 1 1
## 2 2
## 3 3
## 4 1
## 5 1
## 6 1
boxplot(coffee$hhincome ~ coffee$avg_rating,
main ="Boxplot: Coffee Shop Ratings by Income",
xlab ="Average Coffee Shop Rating", ylab ="Average Household Income",
col = c("green","Grey", "orange", "pink"))
##This is the case to a lesser extent with 5 star ratings.
##These outliers are more pronounced as median household income goes above $100.000.
# ggplot(coffee) +
# geom_boxplot(mapping = aes(x = avg_rating, y = hhincome, color = "salmon")) +
# facet_wrap(~county) #<<
bxplot <- ggplot(data = coffee) +
geom_boxplot(aes(x=avg_rating, y=hhincome),
color="salmon",fill="white")+
facet_wrap(~county)
plotly::ggplotly(bxplot)
## Warning: Continuous x aesthetic -- did you forget aes(group=...)?
ggplot(data = coffee, aes(x = review_count_log, y = hhincome)) +
geom_point(mapping = aes(color = pct_white)) +
facet_wrap(~county)+
scale_color_viridis_b(alpha = 1,
begin = 0,
end = 1,
direction = 1,
option = "D",
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "coloursteps",
aesthetics = "colour") +
labs(x = "Review Count (log)", y = "Median Annual Household Income", color = "Proportion of residents who self-identify as white", title = "Scatterplot: Review Count Vs. Household Income")
mycols <- c('pct_pov_log'= "%poverty%",
'hhincome'= "Household Income",
'pct_white' = "% white",
'race.tot'= "Total Population")
library(ggpubr)
coffee %>%
pivot_longer(cols = names(mycols), names_to = "variable", values_to = "value") %>%
ggplot(data = ., mapping = aes(x=review_count_log, y = value)) +
geom_point(aes(color = county)) +
geom_smooth(aes(color = county), method ="lm", se = F) +
ggpubr::stat_cor(method = "pearson")+
facet_wrap(~variable, scales= "free_y", labeller=as_labeller(mycols))+
theme_light()
## `geom_smooth()` using formula 'y ~ x'