Goal

Collect individual returns into a portfolio by assigning a weight to each stock

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

from 2012-12-31 to 2017-12-31

1 Import stock prices

2 Convert prices to returns

3 Assign a weight to each asset

## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
## [1] 0.25 0.25 0.20 0.20 0.10
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

## # A tibble: 60 × 2
##    date       portfolio.returns
##    <date>                 <dbl>
##  1 2013-01-31           0.0204 
##  2 2013-02-28          -0.00239
##  3 2013-03-28           0.0121 
##  4 2013-04-30           0.0174 
##  5 2013-05-31          -0.0128 
##  6 2013-06-28          -0.0247 
##  7 2013-07-31           0.0321 
##  8 2013-08-30          -0.0224 
##  9 2013-09-30           0.0511 
## 10 2013-10-31           0.0301 
## # … with 50 more rows

5 Calculate Standard Deviation

## # A tibble: 1 × 2
##    Stdev  tq_sd
##    <dbl>  <dbl>
## 1 0.0235 0.0235
## [1] 0.005899134

6 Plot

###Expected Returns vs Risk

## # A tibble: 6 × 3
##   asset        Mean  Stdev
##   <chr>       <dbl>  <dbl>
## 1 AGG       0.0017  0.0086
## 2 EEM       0.0028  0.0419
## 3 EFA       0.006   0.0326
## 4 IJS       0.0119  0.0396
## 5 SPY       0.0121  0.0272
## 6 Portfolio 0.00590 0.0235

24 Month Rolling Volatility

## # A tibble: 37 × 2
##    date       rolling_sd
##    <date>          <dbl>
##  1 2014-12-31     0.0237
##  2 2015-01-30     0.0236
##  3 2015-02-27     0.0245
##  4 2015-03-31     0.0246
##  5 2015-04-30     0.0247
##  6 2015-05-29     0.0245
##  7 2015-06-30     0.0242
##  8 2015-07-31     0.0238
##  9 2015-08-31     0.0262
## 10 2015-09-30     0.0247
## # … with 27 more rows