Spatial Autocorrelation
Excercise 9
Sebagai latihan, Anda dipersilahkan menggunakan data yang tersedia pada https://github.com/raoy/SpatialReg . Terdapat dua data yang harus Anda download, yaitu:
Jabar Data (gabung).xlsx
petaJabar2.zip
Data pertama (dengan format Excel) menyimpan
data kependudukan
yang diperoleh dari BPS. Sedangkan data
kedua merupakan data shapefile
berisi peta
Provinsi Jawa Barat
. Silahkan manfaatkan kedua data
tersebut untuk mengeksplorasi pola depedensi spasial untuk peubah
kemiskinan antar kota/kabupaten di Jawa Barat pada tahun 2015. Data
tersebut terdapat pada kolom I dengan nama kolom p.miskin15 pada file
Excel.
Import Data
library(raster)
library(sp)
library(spdep)
library(readxl)
library(rgdal)
#import data kependudukan
<-read_excel("D:/MATERI KULIAH S2 IPB/SEMESTER 2/SPASIAL/Jabar Data (gabung).xlsx", sheet = "data")
Jabardatahead(Jabardata)
## # A tibble: 6 x 32
## PROVNO KABKOTNO KODE2010 PROVINSI KABKOT IDSP2~1 Long Lat p.mis~2 p.mis~3
## <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 32 1 3201 JAWA BARAT BOGOR 3201 107. -6.56 8.96 8.83
## 2 32 2 3202 JAWA BARAT SUKAB~ 3202 107. -7.07 8.96 8.13
## 3 32 3 3203 JAWA BARAT CIANJ~ 3203 107. -7.13 12.2 11.6
## 4 32 4 3204 JAWA BARAT BANDU~ 3204 108. -7.10 8.00 7.61
## 5 32 5 3205 JAWA BARAT GARUT 3205 108. -7.36 12.8 11.6
## 6 32 6 3206 JAWA BARAT TASIK~ 3206 108. -7.50 12.0 11.2
## # ... with 22 more variables: j.miskin15 <dbl>, j.miskin16 <dbl>,
## # AHH2015 <dbl>, AHH2016 <dbl>, EYS2015 <dbl>, EYS2016 <dbl>, MYS2015 <dbl>,
## # MYS2016 <dbl>, EXP2015 <dbl>, EXP2016 <dbl>, APM.SD15 <dbl>,
## # APM.SMP15 <dbl>, APM.SMA15 <dbl>, APM.PT15 <dbl>, APK.SD15 <dbl>,
## # APK.SMP15 <dbl>, APK.SMA15 <dbl>, APK.PT15 <dbl>, APS.USIA15 <dbl>,
## # APS.USIA2 <dbl>, APS.USIA3 <dbl>, APS.USIA4 <dbl>, and abbreviated variable
## # names 1: IDSP2010, 2: p.miskin15, 3: p.miskin16
#import shapefile
<-readOGR(dsn="D:/MATERI KULIAH S2 IPB/SEMESTER 2/SPASIAL/petaJabar2", layer="Jabar2") #dsn diisi nama folder #layer diisi nama file dalam folder petajabar
## OGR data source with driver: ESRI Shapefile
## Source: "D:\MATERI KULIAH S2 IPB\SEMESTER 2\SPASIAL\petaJabar2", layer: "Jabar2"
## with 26 features
## It has 7 fields
#plot peta jabar
plot(petajabar)
text(petajabar,'KABKOT',cex=0.5) #menambahkan nama wilayah pada peta
Eksplorasi Data
library(raster)
<-colorRampPalette(c("yellow", "orange","red"))
colfunc$miskin<-Jabardata$p.miskin15
petajabarspplot(petajabar, "miskin", col.regions=colfunc(16),
main="Peta Persentase Penduduk Miskin di Jawa Barat Tahun 2015")
Matriks Bobot
Distance Matrix
# Distance Matrix
<-cbind(Jabardata$Long ,Jabardata$Lat)
longlatplot(longlat)
<-pointDistance(longlat,lonlat=TRUE) #Distance for longitude/latitude coordinates
gdist<-as.matrix(gdist)
m.gdist
<-dist(longlat) #Euclide
djarak<-as.matrix(djarak) m.djarak
K-Nearest Neighbour Weight
#k=3
<- coordinates(petajabar)
koord <-knn2nb(knearneigh(longlat,k=3,longlat=TRUE)) #matriks bobot dengan knn k=3
W1 W1
## Neighbour list object:
## Number of regions: 26
## Number of nonzero links: 78
## Percentage nonzero weights: 11.53846
## Average number of links: 3
## Non-symmetric neighbours list
Standarisasi bobot:
<- nb2listw(W1,style='W') #W is row standardised (sums over all links to n). Standardisasi Baris
W1 W1
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 26
## Number of nonzero links: 78
## Percentage nonzero weights: 11.53846
## Average number of links: 3
## Non-symmetric neighbours list
##
## Weights style: W
## Weights constants summary:
## n nn S0 S1 S2
## W 26 676 26 15.55556 107.7778
plot(petajabar, col='white', border='navy', main ="KNN (k=3)")
plot(W1, longlat, col='blue', lwd=2, add=TRUE)
text(petajabar,'KABKOT',cex=0.5, col='red')
Radial Distance Weight
#d=60
<-dnearneigh(koord,0,60,longlat=TRUE) #dnearneigh(x, d1, d2, row.names = NULL, longlat = NULL, bounds=c("GE", "LE"), use_kd_tree=TRUE, symtest=FALSE)
W2
W2
## Neighbour list object:
## Number of regions: 26
## Number of nonzero links: 142
## Percentage nonzero weights: 21.00592
## Average number of links: 5.461538
Standarisasi Bobot:
<- nb2listw(W2,style='W') #W is row standardised (sums over all links to n). Standardisasi Baris
W2 W2
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 26
## Number of nonzero links: 142
## Percentage nonzero weights: 21.00592
## Average number of links: 5.461538
##
## Weights style: W
## Weights constants summary:
## n nn S0 S1 S2
## W 26 676 26 9.871522 104.9136
plot(petajabar, col='white', border='navy', main ="Radial Distance Weight d=60")
plot(W2, longlat, col='blue', lwd=2, add=TRUE)
text(petajabar,'KABKOT',cex=0.5, col='red')
Power Distance Weight
Power distance weight dengan \(\alpha = 1\):
# Jarak euclidean
<-1/(m.djarak^1)
W3a
#dinormalisasi
diag(W3a) <-0
<-rowSums(W3a,na.rm=TRUE)
rtot
= mat2listw(W3a,style='W')
W3a summary(W3a)
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 26
## Number of nonzero links: 650
## Percentage nonzero weights: 96.15385
## Average number of links: 25
## Link number distribution:
##
## 25
## 26
## 26 least connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 with 25 links
## 26 most connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 with 25 links
##
## Weights style: W
## Weights constants summary:
## n nn S0 S1 S2
## W 26 676 26 6.638168 105.5718
plot(petajabar, col='white', border='navy', main ="Power Distance Weight alpha=1")
plot(W3a, longlat, col='blue', lwd=2, add=TRUE)
text(petajabar,'KABKOT',cex=0.5, col='red')
Power distance weight dengan \(\alpha = 2\):
# Jarak Euclidean
<-1/(m.djarak^2)
W3b
#dinormalisasi
diag(W3b) <-0
<-rowSums(W3b,na.rm=TRUE)
rtot
<-W3b/rtot #row-normalized
W3browSums(W3b,na.rm=TRUE)
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
= mat2listw(W3b,style='W')#matriks bobot power distance dengan alpha=2
W3b summary(W3b)
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 26
## Number of nonzero links: 650
## Percentage nonzero weights: 96.15385
## Average number of links: 25
## Link number distribution:
##
## 25
## 26
## 26 least connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 with 25 links
## 26 most connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 with 25 links
##
## Weights style: W
## Weights constants summary:
## n nn S0 S1 S2
## W 26 676 26 14.35111 108.236
plot(petajabar, col='white', border='navy', main ="Power Distance Weigth alpha=2, Euclidean")
plot(W3b, longlat, col='blue', lwd=2, add=TRUE)
text(petajabar,'KABKOT',cex=0.5, col='red')
Exponential Distance Weight
=2
alpha<-exp((-alpha)*m.djarak)
W4
#dinormalisasi
diag(W4) <-0
<-rowSums(W4,na.rm=TRUE)
rtot rtot
## 1 2 3 4 5 6 7 8
## 5.385850 3.943443 5.449284 6.769776 5.421621 4.889553 4.646033 5.043533
## 9 10 11 12 13 14 15 16
## 5.099263 6.038772 6.611018 4.833578 5.986258 6.742714 5.272713 5.140898
## 17 18 19 20 21 22 23 24
## 7.169330 5.547803 5.403421 7.394625 5.076805 5.258575 5.189097 7.467575
## 25 26
## 5.487780 4.420439
<-W4/rtot #row-normalized
W4rowSums(W4,na.rm=TRUE)
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
= mat2listw(W4,style='W')
W4 summary(W4)
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 26
## Number of nonzero links: 650
## Percentage nonzero weights: 96.15385
## Average number of links: 25
## Link number distribution:
##
## 25
## 26
## 26 least connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 with 25 links
## 26 most connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 with 25 links
##
## Weights style: W
## Weights constants summary:
## n nn S0 S1 S2
## W 26 676 26 3.497596 104.4985
plot(petajabar, col='white', border='navy', main ="Exponential Distance Weight Alpha=2")
plot(W4, longlat, col='blue', lwd=2, add=TRUE)
Spatial Contiguity Weight
plot(petajabar)
text(petajabar,'KABKOT',cex=0.5) #menambahkan nama wilayah pada peta
class(petajabar)
## [1] "SpatialPolygonsDataFrame"
## attr(,"package")
## [1] "sp"
Rook
#Rook
<-poly2nb(petajabar,queen=FALSE)
W5#matriks bobot Rook W5
## Neighbour list object:
## Number of regions: 26
## Number of nonzero links: 102
## Percentage nonzero weights: 15.08876
## Average number of links: 3.923077
#memetakan jabar dengan matriks bobot Rook
plot(petajabar,col='skyblue',border='white',main="Peta Persentase Kemiskinan Jabar \n Tahun 2015 dengan Rook")
<-coordinates(petajabar)
xyplot(W5,xy,col='red',lwd=2,add=TRUE)
Queen
#Queen
<-poly2nb(petajabar,queen=TRUE)
W6#matriks bobot Queen W6
## Neighbour list object:
## Number of regions: 26
## Number of nonzero links: 102
## Percentage nonzero weights: 15.08876
## Average number of links: 3.923077
#memetakan jabar dengan matriks bobot Queen
par(mai=c(0,0,0,0))
plot(petajabar,col='skyblue',border='white',main="Peta Persentase Kemiskinan Jabar Tahun 2015 dengan Queen")
<-coordinates(petajabar)
xyplot(W6,xy,col='orange',lwd=2,add=TRUE)
Global Autocorrelation
Moran’s I
K-Nearest Neighbor Weight dengan k=3:
<- moran.test(petajabar$miskin,W1)
MI1 MI1
##
## Moran I test under randomisation
##
## data: petajabar$miskin
## weights: W1
##
## Moran I statistic standard deviate = 3.2398, p-value = 0.000598
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.42074017 -0.04000000 0.02022419
Radial Distance Weight
<- moran.test(petajabar$miskin,W2)
MI2 MI2
##
## Moran I test under randomisation
##
## data: petajabar$miskin
## weights: W2
##
## Moran I statistic standard deviate = 3.2719, p-value = 0.0005341
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.31496539 -0.04000000 0.01176964
Power Distance Weight
- Power distance weight dengan alpha = 1
<- moran.test(petajabar$miskin,W3a)
MI3a MI3a
##
## Moran I test under randomisation
##
## data: petajabar$miskin
## weights: W3a
##
## Moran I statistic standard deviate = 2.1932, p-value = 0.01415
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.141165530 -0.040000000 0.006823324
- Power distance weight dengan alpha = 2
<- moran.test(petajabar$miskin,W3b)
MI3b MI3b
##
## Moran I test under randomisation
##
## data: petajabar$miskin
## weights: W3b
##
## Moran I statistic standard deviate = 2.5972, p-value = 0.004699
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.3120068 -0.0400000 0.0183689
Exponential distance weight
<- moran.test(petajabar$miskin,W4)
MI4 MI4
##
## Moran I test under randomisation
##
## data: petajabar$miskin
## weights: W4
##
## Moran I statistic standard deviate = 4.4975, p-value = 3.439e-06
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.167150691 -0.040000000 0.002121481
Spatial Contiguity Weight
- Rook
<- moran.test(petajabar$miskin,W4)
MI5 MI5
##
## Moran I test under randomisation
##
## data: petajabar$miskin
## weights: W4
##
## Moran I statistic standard deviate = 4.4975, p-value = 3.439e-06
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.167150691 -0.040000000 0.002121481
- Queen
<- moran.test(petajabar$miskin,W4)
MI6 MI6
##
## Moran I test under randomisation
##
## data: petajabar$miskin
## weights: W4
##
## Moran I statistic standard deviate = 4.4975, p-value = 3.439e-06
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.167150691 -0.040000000 0.002121481
Simulasi Monte Carlo
Uji moran juga dapat dilakukan dengan melibatkan simulasi monte carlo.
set.seed(123)
<- moran.mc(petajabar$miskin,W1, nsim=399)
MI7
# View results (including p-value)
MI7
##
## Monte-Carlo simulation of Moran I
##
## data: petajabar$miskin
## weights: W1
## number of simulations + 1: 400
##
## statistic = 0.42074, observed rank = 397, p-value = 0.0075
## alternative hypothesis: greater
Hasil Global Moran’s I Autocorrelation
## Bobot.Spatial Moran.I p.value
## 1 KNN Weight 0.4207402 5.980e-04
## 2 Radial Distance Weight 0.3149654 5.341e-04
## 3 Power Distance Weight alpha=1 0.1411655 1.415e-02
## 4 Power Distance Weight alpha=2 0.3120068 4.699e-03
## 5 Exponential Distance Weight 0.1671507 3.439e-06
## 6 Spatial Contiguity (Rook) 0.1671507 3.439e-06
## 7 Spatial Contiguity (Queen) 0.1671507 3.439e-06
## 8 Simulasi Monte Carlo 0.4207400 7.500e-03
Berdasarkan hasil di atas, diperoleh p-value < 0.05 berarti H0
ditolak, dengan alternative hypothesis: greater
berarti
pada taraf nyata 5%, terdapat autokorelasi spasial positif.
Geary
Global Geary’s C
Geary’s C merupakan alternatif dari indeks Moran, yang memiliki nilai antara 0 s.d 2. Nilai 0 menunjukkan autokorelasi positif, 1 menunjukkan tidak ada autokorelasi, dan 2 menunjukkan autokorelasi negatif.
KNN Weights
<- geary.test(petajabar$miskin,W1)
C1 C1
##
## Geary C test under randomisation
##
## data: petajabar$miskin
## weights: W1
##
## Geary C statistic standard deviate = 2.5241, p-value = 0.005799
## alternative hypothesis: Expectation greater than statistic
## sample estimates:
## Geary C statistic Expectation Variance
## 0.63708305 1.00000000 0.02067246
Radial Distance Weight
<- geary.test(petajabar$miskin,W2)
C2 C2
##
## Geary C test under randomisation
##
## data: petajabar$miskin
## weights: W2
##
## Geary C statistic standard deviate = 3.1399, p-value = 0.000845
## alternative hypothesis: Expectation greater than statistic
## sample estimates:
## Geary C statistic Expectation Variance
## 0.66535312 1.00000000 0.01135907
Power Distance Weight
- Power distance weight dengan alpha = 1
<- geary.test(petajabar$miskin,W3a)
C3a C3a
##
## Geary C test under randomisation
##
## data: petajabar$miskin
## weights: W3a
##
## Geary C statistic standard deviate = 2.0638, p-value = 0.01952
## alternative hypothesis: Expectation greater than statistic
## sample estimates:
## Geary C statistic Expectation Variance
## 0.825735951 1.000000000 0.007129903
- Power distance weight dengan alpha = 2
<- geary.test(petajabar$miskin,W3b)
C3b C3b
##
## Geary C test under randomisation
##
## data: petajabar$miskin
## weights: W3b
##
## Geary C statistic standard deviate = 2.448, p-value = 0.007182
## alternative hypothesis: Expectation greater than statistic
## sample estimates:
## Geary C statistic Expectation Variance
## 0.6608234 1.0000000 0.0191966
Exponential distance weight
<- geary.test(petajabar$miskin,W4)
C4 C4
##
## Geary C test under randomisation
##
## data: petajabar$miskin
## weights: W4
##
## Geary C statistic standard deviate = 4.1302, p-value = 1.812e-05
## alternative hypothesis: Expectation greater than statistic
## sample estimates:
## Geary C statistic Expectation Variance
## 0.805313190 1.000000000 0.002221941
Spatial Contiguity Weight
- Rook
<- geary.test(petajabar$miskin,W4)
C5 C5
##
## Geary C test under randomisation
##
## data: petajabar$miskin
## weights: W4
##
## Geary C statistic standard deviate = 4.1302, p-value = 1.812e-05
## alternative hypothesis: Expectation greater than statistic
## sample estimates:
## Geary C statistic Expectation Variance
## 0.805313190 1.000000000 0.002221941
- Queen
<- geary.test(petajabar$miskin,W4)
C6 C6
##
## Geary C test under randomisation
##
## data: petajabar$miskin
## weights: W4
##
## Geary C statistic standard deviate = 4.1302, p-value = 1.812e-05
## alternative hypothesis: Expectation greater than statistic
## sample estimates:
## Geary C statistic Expectation Variance
## 0.805313190 1.000000000 0.002221941
Simulasi Monte Carlo
#Dengan monte carlo:
set.seed(018)
<- geary.mc(petajabar$miskin,W1, nsim=399)
C7 C7
##
## Monte-Carlo simulation of Geary C
##
## data: petajabar$miskin
## weights: W1
## number of simulations + 1: 400
##
## statistic = 0.63708, observed rank = 2, p-value = 0.005
## alternative hypothesis: greater
Hasil Global Geary’s C Autocorrelation
## Bobot.Spatial Geary.s.C p.value
## 1 KNN Weight 0.6370830 5.799e-03
## 2 Radial Distance Weight 0.6653531 8.450e-04
## 3 Power Distance Weight alpha=1 0.8257360 1.952e-02
## 4 Power Distance Weight alpha=2 0.6608234 7.182e-03
## 5 Exponential Distance Weight 0.8053132 1.812e-05
## 6 Spatial Contiguity (Rook) 0.8053132 1.812e-05
## 7 Spatial Contiguity (Queen) 0.8053132 1.812e-05
## 8 Simulasi Monte Carlo 0.6370800 5.000e-03
Berdasarkan hasil di atas, diperoleh p-value < 0.05 berarti H0
ditolak, dengan alternative hypothesis: greater
berarti
pada taraf nyata 5%, terdapat autokorelasi spasial positif.
Local Autocorrelation
Local Moran’s I
Pendekatan ini termasuk ke dalam Local Indicators for Spatial Association (LISA), yang mengindentifikasi autokorelasi pada tingkat lokal.
<- order(petajabar$miskin)
oid <- localmoran(petajabar$miskin,W1)
lisa lisa
## Ii E.Ii Var.Ii Z.Ii Pr(z != E(Ii))
## 1 0.40274292 -0.0034206161 0.027081939 2.4680903 0.01358360
## 2 0.03773872 -0.0034166067 0.027050305 0.2502303 0.80240924
## 3 0.02761853 -0.0161007157 0.125851779 0.1232375 0.90191900
## 4 0.36763087 -0.0128274967 0.100600119 1.1995211 0.23032539
## 5 0.48124464 -0.0257890053 0.199595686 1.1349094 0.25641327
## 6 0.44022459 -0.0130813970 0.102564955 1.4154416 0.15693906
## 7 -0.15545147 -0.0032722181 0.025910890 -0.9453971 0.34445619
## 8 1.00842208 -0.0514436416 0.387666591 1.7022434 0.08870975
## 9 1.10819674 -0.0743755166 0.546925737 1.5990554 0.10980830
## 10 0.74264273 -0.0572632690 0.428874375 1.2214450 0.22191759
## 11 0.14192119 -0.0061121635 0.048260950 0.6738475 0.50040826
## 12 1.06134396 -0.0810614425 0.591785520 1.4850398 0.13753329
## 13 0.34047226 -0.0168621909 0.131701867 0.9846433 0.32479932
## 14 -0.01870636 -0.0023289311 0.018458973 -0.1205430 0.90405304
## 15 -0.10441646 -0.0004750149 0.003771937 -1.6924137 0.09056712
## 16 1.49678574 -0.0722084307 0.532233077 2.1506533 0.03150358
## 17 -0.83483233 -0.0233510560 0.181179285 -1.9064448 0.05659252
## 18 0.84930716 -0.0185301894 0.144484193 2.2831170 0.02242348
## 19 0.03849214 -0.0046566449 0.036822186 0.2248608 0.82208755
## 20 0.50160978 -0.0937423249 0.674917906 0.7246836 0.46864618
## 21 0.13245000 -0.0004627854 0.003674871 2.1925308 0.02834120
## 22 1.63244773 -0.0665280966 0.493366755 2.4188128 0.01557125
## 23 1.63020958 -0.1868664910 1.207137722 1.6538446 0.09815909
## 24 0.52468954 -0.0557668757 0.418330065 0.8974496 0.36947905
## 25 -0.26765454 -0.1285172520 0.889782290 -0.1475033 0.88273480
## 26 -0.64588524 -0.0215396278 0.167434507 -1.5258175 0.12705533
## attr(,"call")
## localmoran(x = petajabar$miskin, listw = W1)
## attr(,"class")
## [1] "localmoran" "matrix" "array"
## attr(,"quadr")
## mean median pysal
## 1 Low-Low Low-Low Low-Low
## 2 Low-Low Low-Low Low-Low
## 3 High-High High-High High-High
## 4 Low-Low Low-Low Low-Low
## 5 High-High High-High High-High
## 6 High-High High-High High-High
## 7 Low-High Low-High Low-High
## 8 High-High High-High High-High
## 9 High-High High-High High-High
## 10 High-High High-High High-High
## 11 High-High High-High High-High
## 12 High-High High-High High-High
## 13 High-High High-High High-High
## 14 Low-High Low-High Low-High
## 15 High-Low High-Low High-Low
## 16 Low-Low Low-Low Low-Low
## 17 High-Low High-Low High-Low
## 18 Low-Low Low-Low Low-Low
## 19 Low-Low Low-Low Low-Low
## 20 Low-Low Low-Low Low-Low
## 21 High-High High-High High-High
## 22 Low-Low Low-Low Low-Low
## 23 Low-Low Low-Low Low-Low
## 24 Low-Low Low-Low Low-Low
## 25 High-Low High-Low High-Low
## 26 Low-High Low-High Low-High
$z.li <- lisa[,4]
petajabar$pvalue <- lisa[,5]
petajabar<- colorRampPalette(c("yellow","orange", "red"), space = "rgb")
lm.palette spplot(petajabar, zcol="z.li", col.regions=lm.palette(20), main="Local Moran")
Warna yang lebih pekat berarti memiliki nilai Z_Score yang besar, apabila Z-Score > 2 atau Z-score < -2 berarti daerah tersebut memiliki pengaruh yang signifikan terhadap tetangganya.
moran.plot(petajabar$miskin,W1)
Getis-Ord Gi
Menurut Mendez (2020), pendekatan Getis-ord Gi dapat membantu mengidentifikasi pola penggerombolan berdasarkan ukuran autokorelasi pada level lokal.
<- localG(petajabar$miskin,W1)
local_gi
local_gi
## [1] -2.4680903 -0.2502303 0.1232375 -1.1995211 1.1349094 1.4154416
## [7] 0.9453971 1.7022434 1.5990554 1.2214450 0.6738475 1.4850398
## [13] 0.9846433 0.1205430 -1.6924137 -2.1506533 -1.9064448 -2.2831170
## [19] -0.2248608 -0.7246836 2.1925308 -2.4188128 -1.6538446 -0.8974496
## [25] -0.1475033 1.5258175
## attr(,"gstari")
## [1] FALSE
## attr(,"call")
## localG(x = petajabar$miskin, listw = W1)
## attr(,"class")
## [1] "localG"
Output di atas menghasilkan z-score, yang biasanya disajikan secara visual untuk mengidentifikasi cluster maupun hotspot.
$localg <- as.numeric(local_gi)
petajabar<- colorRampPalette(c("yellow","orange", "red"), space = "rgb")
lm.palette spplot(petajabar, zcol="localg", col.regions=lm.palette(20), main="Local Gi")
Notes
Pilih bobot yang menghasilkan autokorelasi spasial terbesar.