What do you call a fake noodle?
An impasta.
Concentration is the key variable in mass transport, and can be defined in a number of ways, including the following:
Formulate differential equation for equilibrium concentration of fluid particles in pipe as a function of distance from end of pipe.
\[ \small{\begin{Bmatrix} \mathrm{rate \, of \, change \, of } \\ \mathrm{mass \, within \, region} \end{Bmatrix} = \begin{Bmatrix} \mathrm{rate \,mass \, flows} \\ \mathrm{into \, region} \\ \end{Bmatrix} - \begin{Bmatrix} \mathrm{rate \,mass \, flows} \\ \mathrm{ out \, of \, region} \end{Bmatrix}} \]
Relates mass flux to the rate of change of concentration:
\[ J(x) = -D \frac{dC}{dx} \]
Similar to Fourier's law of heat conduction.
\[ J(x,t) = -D \frac {\partial C (x,t)}{\partial x} \]
\[ \small{ \begin{aligned} \begin{Bmatrix} \mathrm{rate \, of \, change \, of } \\ \mathrm{mass \, within \, region} \end{Bmatrix} &= \begin{Bmatrix} \mathrm{rate \,mass \, flows} \\ \mathrm{into \, region} \\ \end{Bmatrix} - \begin{Bmatrix} \mathrm{rate \,mass \, flows} \\ \mathrm{ out \, of \, region} \end{Bmatrix} \\ 0 & = J(x)A - J(x+ \Delta x)A \end{aligned} } \]
\[ \small{ 0 = \lim_{h \rightarrow 0} \frac{J(x+ h) - J(r)}{h} = \frac{dJ}{dx}} \]
Our ODE for mass flux \( J(x) \) is:
\[ \frac{dJ}{dx}=0 \]
To get an ODE in terms of \( C(x) \), recall Fick's Law:
\[ J(x) = -D\frac{dC}{dx} \]
Thus the ODE for the concentration \( C(x) \) at equilibrium is
\[ \frac{d^2C}{dx^2}=0 \]
For linear diffusion inside cylinder, the ODE we derived is
\[ \frac{d^2C}{dx^2}=0 \]
For radial diffusion inside the cylinder, the ODE is
\[ \frac{d}{dr} \left( r \frac{dC}{dr} \right) = 0 \]
This follows since the area through which diffusion occurs changes with distance \( r \) from the center.
For spherical geometry, we have
\[ \frac{d}{dr} \left( r^2 \frac{dC}{dr} \right) = 0 \]
This follows since the area through which diffusion occurs changes with square of the distance \( r^2 \) from the center.
If we add an additional source/sink of particles into the system at distance \( r \) from the center of the sphere, then the ODE gets more complicated; see next slide.
\[ D \frac{1}{r^2} \frac{d}{dr} \left( r \frac{dC}{dr} \right) + M(r) = 0 \]
Assuming volumetric mass source at distance \( r \) from center:
\[ D \frac{1}{r^2} \frac{d}{dr} \left( r \frac{dC}{dr} \right) + M(r) = 0 \]