Analysis: Compare the frequency of cyber crime in each year.
Load Data
urldata<- "https://raw.githubusercontent.com/kglan/MSDS/main/DATA607/Data%20Transformation/Cyber%20Threats/cyberthreats.csv"
nbad<- read_csv(url(urldata))
## Rows: 8 Columns: 5
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## dbl (5): Year, Adware, Backdoor, Ransomware, Trojan
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
nbad
## # A tibble: 8 x 5
## Year Adware Backdoor Ransomware Trojan
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2022 2242 356 2352 680
## 2 2016 2679 664 3634 429
## 3 2020 1853 523 3122 534
## 4 2019 1634 354 2685 254
## 5 2015 1263 235 1547 336
## 6 2017 856 273 1785 346
## 7 2021 945 195 2073 264
## 8 2018 735 152 1863 174
Conclusion
We see here that the amount of Cyber threats fluctuates per year
based on the custom dataset profided by classmate.